coarf++:内容感知辐射场对准模型复杂性与场景复杂性。

Weihang Liu, Xue Xian Zheng, Yuke Li, Tareq Y Al-Naffouri, Jingyi Yu, Xin Lou
{"title":"coarf++:内容感知辐射场对准模型复杂性与场景复杂性。","authors":"Weihang Liu, Xue Xian Zheng, Yuke Li, Tareq Y Al-Naffouri, Jingyi Yu, Xin Lou","doi":"10.1109/TVCG.2025.3566071","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces the concept of Content-Aware Radiance Fields (CoARF), which adaptively aligns the model complexity with the scene intricacy. By examining the intricacies of radiance fields from three perspectives, model complexity is adapted through scalable feature grids, dynamic neural networks, and model quantization. Specifically, we propose a hash collision detection mechanism that removes redundant feature grid by restricting the valid hash collision to reasonable level, making the space complexity scalable. We introduce an uncertainty-aware decoded layer, where simple points are early-exited to prevent them from being processed by deeper network layers, ensuring computational complexity scalable. Furthermore, we propose Learned Bitwidth Quantization (LBQ) and Adversarial Content-Aware Quantization (A-CAQ) paradigms by making the bitwidth of parameters differentiable and trainable, allowing for adjustable quantization schemes. Building on these techniques, the proposed CoARF++ framework enables a scalable pipeline for radiance fields that is tailored to the unique characteristics of scene complexity and quality requirement. Extensive experiments demonstrate a significant and adjustable reduction in model complexity across various NeRF variants, while maintaining the necessary reconstruction and rendering quality, making it advantageous for the practical deployment of radiance field models. Codes are available at https://github.com/WeihangLiu2024/Content_Aware_NeRF.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CoARF++: Content-Aware Radiance Field Aligning Model Complexity With Scene Intricacy.\",\"authors\":\"Weihang Liu, Xue Xian Zheng, Yuke Li, Tareq Y Al-Naffouri, Jingyi Yu, Xin Lou\",\"doi\":\"10.1109/TVCG.2025.3566071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper introduces the concept of Content-Aware Radiance Fields (CoARF), which adaptively aligns the model complexity with the scene intricacy. By examining the intricacies of radiance fields from three perspectives, model complexity is adapted through scalable feature grids, dynamic neural networks, and model quantization. Specifically, we propose a hash collision detection mechanism that removes redundant feature grid by restricting the valid hash collision to reasonable level, making the space complexity scalable. We introduce an uncertainty-aware decoded layer, where simple points are early-exited to prevent them from being processed by deeper network layers, ensuring computational complexity scalable. Furthermore, we propose Learned Bitwidth Quantization (LBQ) and Adversarial Content-Aware Quantization (A-CAQ) paradigms by making the bitwidth of parameters differentiable and trainable, allowing for adjustable quantization schemes. Building on these techniques, the proposed CoARF++ framework enables a scalable pipeline for radiance fields that is tailored to the unique characteristics of scene complexity and quality requirement. Extensive experiments demonstrate a significant and adjustable reduction in model complexity across various NeRF variants, while maintaining the necessary reconstruction and rendering quality, making it advantageous for the practical deployment of radiance field models. Codes are available at https://github.com/WeihangLiu2024/Content_Aware_NeRF.</p>\",\"PeriodicalId\":94035,\"journal\":{\"name\":\"IEEE transactions on visualization and computer graphics\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on visualization and computer graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2025.3566071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3566071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了内容感知辐射场(Content-Aware Radiance Fields, CoARF)的概念,该概念能够自适应地将模型复杂度与场景复杂性相匹配。通过从三个角度研究辐射场的复杂性,通过可扩展的特征网格、动态神经网络和模型量化来适应模型复杂性。具体而言,我们提出了一种哈希冲突检测机制,通过将有效哈希冲突限制在合理的水平来去除冗余特征网格,使空间复杂度具有可扩展性。我们引入了一个不确定性感知的解码层,其中简单的点被提前退出,以防止它们被更深的网络层处理,确保计算复杂性的可扩展性。此外,我们提出了学习比特宽量化(LBQ)和对抗性内容感知量化(A-CAQ)范例,通过使参数的比特宽可微分和可训练,允许可调整的量化方案。在这些技术的基础上,提出的coarf++框架为辐射场提供了可扩展的管道,以适应场景复杂性和质量要求的独特特征。大量的实验表明,在各种NeRF变体中,模型复杂性的显著和可调降低,同时保持必要的重建和渲染质量,使其有利于实际部署辐射场模型。代码可在https://github.com/WeihangLiu2024/Content_Aware_NeRF上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CoARF++: Content-Aware Radiance Field Aligning Model Complexity With Scene Intricacy.

This paper introduces the concept of Content-Aware Radiance Fields (CoARF), which adaptively aligns the model complexity with the scene intricacy. By examining the intricacies of radiance fields from three perspectives, model complexity is adapted through scalable feature grids, dynamic neural networks, and model quantization. Specifically, we propose a hash collision detection mechanism that removes redundant feature grid by restricting the valid hash collision to reasonable level, making the space complexity scalable. We introduce an uncertainty-aware decoded layer, where simple points are early-exited to prevent them from being processed by deeper network layers, ensuring computational complexity scalable. Furthermore, we propose Learned Bitwidth Quantization (LBQ) and Adversarial Content-Aware Quantization (A-CAQ) paradigms by making the bitwidth of parameters differentiable and trainable, allowing for adjustable quantization schemes. Building on these techniques, the proposed CoARF++ framework enables a scalable pipeline for radiance fields that is tailored to the unique characteristics of scene complexity and quality requirement. Extensive experiments demonstrate a significant and adjustable reduction in model complexity across various NeRF variants, while maintaining the necessary reconstruction and rendering quality, making it advantageous for the practical deployment of radiance field models. Codes are available at https://github.com/WeihangLiu2024/Content_Aware_NeRF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信