Arife Uzundurukan, Mark Nelson, Christopher Teske, Mohamed Shahidul Islam, Elzagheid Mohamed, John Victor Christy, Holli-Joi Martin, Eugene Muratov, Samantha Glover, Domenico Fuoco
{"title":"药物发现中的计算机方法的荟萃分析和回顾-第1部分:从大数据到化学空间的技术演变和趋势。","authors":"Arife Uzundurukan, Mark Nelson, Christopher Teske, Mohamed Shahidul Islam, Elzagheid Mohamed, John Victor Christy, Holli-Joi Martin, Eugene Muratov, Samantha Glover, Domenico Fuoco","doi":"10.1038/s41397-025-00368-z","DOIUrl":null,"url":null,"abstract":"<p><p>This review offers an overview of advanced in silico methods crucial for drug discovery, emphasizing their integration with data science, and investigates the effectiveness of data science, machine learning, and artificial intelligence via a thorough meta-analysis of existing technologies. This meta-analysis aims to rank these technologies based on their applications and accessibility of knowledge. Initially, a search strategy yielded 900 papers, which were then refined into two subsets: the top 300 most-cited papers since 2000 and papers selected for systematic review based on high impact. From these, 97 articles were identified for discussion, categorized by their influence on society. The focus remains on the qualitative impact of these disciplines rather than solely on metrics like new drug approvals. Ultimately, the review underscores the role of big data in enhancing our comprehension of drug candidate trajectories from development to commercialization, utilizing information stored in publicly available databases to chemical space. Graphical extrapolation of some keywords (Drug Discovery; Big Data; Database; Metadata) discussed in this article and their evolution (in terms of absolute items that are available) by time.</p>","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"25 3","pages":"8"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-analysis and review of in silico methods in drug discovery - part 1: technological evolution and trends from big data to chemical space.\",\"authors\":\"Arife Uzundurukan, Mark Nelson, Christopher Teske, Mohamed Shahidul Islam, Elzagheid Mohamed, John Victor Christy, Holli-Joi Martin, Eugene Muratov, Samantha Glover, Domenico Fuoco\",\"doi\":\"10.1038/s41397-025-00368-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review offers an overview of advanced in silico methods crucial for drug discovery, emphasizing their integration with data science, and investigates the effectiveness of data science, machine learning, and artificial intelligence via a thorough meta-analysis of existing technologies. This meta-analysis aims to rank these technologies based on their applications and accessibility of knowledge. Initially, a search strategy yielded 900 papers, which were then refined into two subsets: the top 300 most-cited papers since 2000 and papers selected for systematic review based on high impact. From these, 97 articles were identified for discussion, categorized by their influence on society. The focus remains on the qualitative impact of these disciplines rather than solely on metrics like new drug approvals. Ultimately, the review underscores the role of big data in enhancing our comprehension of drug candidate trajectories from development to commercialization, utilizing information stored in publicly available databases to chemical space. Graphical extrapolation of some keywords (Drug Discovery; Big Data; Database; Metadata) discussed in this article and their evolution (in terms of absolute items that are available) by time.</p>\",\"PeriodicalId\":54624,\"journal\":{\"name\":\"Pharmacogenomics Journal\",\"volume\":\"25 3\",\"pages\":\"8\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenomics Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41397-025-00368-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41397-025-00368-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Meta-analysis and review of in silico methods in drug discovery - part 1: technological evolution and trends from big data to chemical space.
This review offers an overview of advanced in silico methods crucial for drug discovery, emphasizing their integration with data science, and investigates the effectiveness of data science, machine learning, and artificial intelligence via a thorough meta-analysis of existing technologies. This meta-analysis aims to rank these technologies based on their applications and accessibility of knowledge. Initially, a search strategy yielded 900 papers, which were then refined into two subsets: the top 300 most-cited papers since 2000 and papers selected for systematic review based on high impact. From these, 97 articles were identified for discussion, categorized by their influence on society. The focus remains on the qualitative impact of these disciplines rather than solely on metrics like new drug approvals. Ultimately, the review underscores the role of big data in enhancing our comprehension of drug candidate trajectories from development to commercialization, utilizing information stored in publicly available databases to chemical space. Graphical extrapolation of some keywords (Drug Discovery; Big Data; Database; Metadata) discussed in this article and their evolution (in terms of absolute items that are available) by time.
期刊介绍:
The Pharmacogenomics Journal is a print and electronic journal, which is dedicated to the rapid publication of original research on pharmacogenomics and its clinical applications.
Key areas of coverage include:
Personalized medicine
Effects of genetic variability on drug toxicity and efficacy
Identification and functional characterization of polymorphisms relevant to drug action
Pharmacodynamic and pharmacokinetic variations and drug efficacy
Integration of new developments in the genome project and proteomics into clinical medicine, pharmacology, and therapeutics
Clinical applications of genomic science
Identification of novel genomic targets for drug development
Potential benefits of pharmacogenomics.