MobiDB-lite 4.0:更快地预测内在蛋白质紊乱和结构紧密性。

Mahta Mehdiabadi, Matthias Blum, Giulio Tesei, Sören von Bülow, Kresten Lindorff-Larsen, Silvio C E Tosatto, Damiano Piovesan
{"title":"MobiDB-lite 4.0:更快地预测内在蛋白质紊乱和结构紧密性。","authors":"Mahta Mehdiabadi, Matthias Blum, Giulio Tesei, Sören von Bülow, Kresten Lindorff-Larsen, Silvio C E Tosatto, Damiano Piovesan","doi":"10.1093/bioinformatics/btaf297","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>In recent years, many disorder predictors have been developed to identify intrinsically disordered regions (IDRs) in proteins, achieving high accuracy. However, it may be difficult to interpret differences in predictions across methods. Consensus methods offer a simple solution, highlighting reliable predictions while filtering out uncertain positions. Here, we present a new version of MobiDB-lite, a consensus method designed to predict long IDRs and classify them based on compositional biases and conformational properties.</p><p><strong>Results: </strong>MobiDB-lite 4.0 pipeline was optimized to be ten times faster than the previous version. It now provides compactness annotations based on predicted apparent scaling exponent. The newly added features and disorder subclassifications allow the users to get a comprehensive insight into the protein's function and characteristics. MobiDB-lite 4.0 is integrated into the MobiDB and DisProt databases. A version without the compactness predictor is integrated into InterProScan, propagating MobiDB-lite annotations to UniProtKB.</p><p><strong>Availability and implementation: </strong>The MobiDB-lite 4.0 source code and a Docker container are available from the GitHub repository: https://github.com/BioComputingUP/MobiDB-lite.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MobiDB-lite 4.0: faster prediction of intrinsic protein disorder and structural compactness.\",\"authors\":\"Mahta Mehdiabadi, Matthias Blum, Giulio Tesei, Sören von Bülow, Kresten Lindorff-Larsen, Silvio C E Tosatto, Damiano Piovesan\",\"doi\":\"10.1093/bioinformatics/btaf297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>In recent years, many disorder predictors have been developed to identify intrinsically disordered regions (IDRs) in proteins, achieving high accuracy. However, it may be difficult to interpret differences in predictions across methods. Consensus methods offer a simple solution, highlighting reliable predictions while filtering out uncertain positions. Here, we present a new version of MobiDB-lite, a consensus method designed to predict long IDRs and classify them based on compositional biases and conformational properties.</p><p><strong>Results: </strong>MobiDB-lite 4.0 pipeline was optimized to be ten times faster than the previous version. It now provides compactness annotations based on predicted apparent scaling exponent. The newly added features and disorder subclassifications allow the users to get a comprehensive insight into the protein's function and characteristics. MobiDB-lite 4.0 is integrated into the MobiDB and DisProt databases. A version without the compactness predictor is integrated into InterProScan, propagating MobiDB-lite annotations to UniProtKB.</p><p><strong>Availability and implementation: </strong>The MobiDB-lite 4.0 source code and a Docker container are available from the GitHub repository: https://github.com/BioComputingUP/MobiDB-lite.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf297\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:近年来,已经开发了许多疾病预测因子来识别蛋白质中的内在紊乱区域(IDRs),并取得了很高的准确性。然而,可能很难解释不同方法的预测差异。共识方法提供了一个简单的解决方案,突出可靠的预测,同时过滤掉不确定的立场。在这里,我们提出了一个新版本的MobiDB-lite,这是一种共识方法,旨在预测长idr并根据成分偏差和构象属性对它们进行分类。结果:MobiDB-lite 4.0管道优化后速度比之前版本快10倍。它现在提供基于预测的表观缩放指数的紧凑性注释。新增的特征和紊乱亚分类允许用户全面了解蛋白质的功能和特征。MobiDB-lite 4.0集成到MobiDB和DisProt数据库中。没有紧凑预测器的版本集成到InterProScan中,将MobiDB-lite注释传播到UniProtKB。可用性:MobiDB-lite 4.0源代码和Docker容器可从GitHub存储库中获得:https://github.com/BioComputingUP/MobiDB-lite。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MobiDB-lite 4.0: faster prediction of intrinsic protein disorder and structural compactness.

Motivation: In recent years, many disorder predictors have been developed to identify intrinsically disordered regions (IDRs) in proteins, achieving high accuracy. However, it may be difficult to interpret differences in predictions across methods. Consensus methods offer a simple solution, highlighting reliable predictions while filtering out uncertain positions. Here, we present a new version of MobiDB-lite, a consensus method designed to predict long IDRs and classify them based on compositional biases and conformational properties.

Results: MobiDB-lite 4.0 pipeline was optimized to be ten times faster than the previous version. It now provides compactness annotations based on predicted apparent scaling exponent. The newly added features and disorder subclassifications allow the users to get a comprehensive insight into the protein's function and characteristics. MobiDB-lite 4.0 is integrated into the MobiDB and DisProt databases. A version without the compactness predictor is integrated into InterProScan, propagating MobiDB-lite annotations to UniProtKB.

Availability and implementation: The MobiDB-lite 4.0 source code and a Docker container are available from the GitHub repository: https://github.com/BioComputingUP/MobiDB-lite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信