淋巴细胞特征与自身免疫性边缘脑炎的临床表型相对应。

IF 4.1 Q1 CLINICAL NEUROLOGY
Brain communications Pub Date : 2025-04-18 eCollection Date: 2025-01-01 DOI:10.1093/braincomms/fcaf156
Saskia Räuber, Andreas Schulte-Mecklenbeck, Kelvin Sarink, Christoph Müller, Manoj Mannil, Lisa Langenbruch, Andre Dik, Sumanta Barman, Christine Strippel, Marco Gallus, Kristin S Golombeck, Christina B Schroeter, Alice Willison, Christopher Nelke, Fatme Seval Ismail, Wolfram Schwindt, Norbert Goebels, Stjepana Kovac, Heinz Wiendl, Gerd Meyer Zu Hörste, Thomas Duning, Michael Hanke, Tobias Ruck, Walter Heindel, Udo Dannlowski, Tim Hahn, Catharina C Gross, Sven G Meuth, Nico Melzer
{"title":"淋巴细胞特征与自身免疫性边缘脑炎的临床表型相对应。","authors":"Saskia Räuber, Andreas Schulte-Mecklenbeck, Kelvin Sarink, Christoph Müller, Manoj Mannil, Lisa Langenbruch, Andre Dik, Sumanta Barman, Christine Strippel, Marco Gallus, Kristin S Golombeck, Christina B Schroeter, Alice Willison, Christopher Nelke, Fatme Seval Ismail, Wolfram Schwindt, Norbert Goebels, Stjepana Kovac, Heinz Wiendl, Gerd Meyer Zu Hörste, Thomas Duning, Michael Hanke, Tobias Ruck, Walter Heindel, Udo Dannlowski, Tim Hahn, Catharina C Gross, Sven G Meuth, Nico Melzer","doi":"10.1093/braincomms/fcaf156","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune limbic encephalitis is an inflammatory condition confined to the limbic system of the brain that is deemed to be due to a dysregulated immune response. However, the exact pathophysiological mechanisms remain elusive. Diagnosis of autoimmune limbic encephalitis currently relies on clinical consensus criteria. However, diagnostic workup can be challenging, potentially delaying treatment initiation associated with poor clinical outcomes. We retrospectively identified 640 patients (81 autoimmune limbic encephalitis, 148 relapsing-remitting multiple sclerosis, 197 Alzheimer's disease, 67 frontotemporal dementia, 37 temporal lobe epilepsy with hippocampal sclerosis and 110 somatic symptom disorder patients). Applying multidimensional flow-cytometry together with novel computational approaches, we analysed the peripheral blood and cerebrospinal fluid immune cell profiles at different disease stages and performed correlations with clinical parameters (i.e. neuropsychological performance, EEG and MRI). We were able to identify a shared immune signature of autoimmune limbic encephalitis showing similarities in adaptive B and T cell response with other inflammatory central nervous system diseases and in T cell patterns with neurodegenerative disorders. Antibody-negative autoimmune limbic encephalitis showed a pronounced T cell response in peripheral blood similar to temporal lobe epilepsy and hippocampal sclerosis and neurodegenerative disorders differentiating from antibody-positive autoimmune limbic encephalitis and classical inflammatory central nervous system diseases with regard to B and plasma cell response. Longitudinal immune cell phenotyping in autoimmune limbic encephalitis revealed dynamic changes over time mainly affecting the innate, B and plasma cell compartment. Correlation analysis indicated associations between the baseline immune cell profile, especially lymphocytes, and neuropsychological performance, as well as EEG and MRI abnormalities. Applying novel computational approaches, we found that multidimensional flow cytometry together with routine CSF parameters could reliably distinguish autoimmune limbic encephalitis from controls and clinical differential diagnoses. Incorporation of multidimensional flow cytometry parameters showed superior discriminatory ability compared with CSF routine parameters alone. Taken together, autoimmune limbic encephalitis is characterized by a B and T cell dominated intrathecal immune-cell signature corresponding to changes reported in the brain parenchyma and showing similarities with classical inflammatory central nervous system diseases and neurodegenerative disorders. Incorporating clinical parameters and applying novel computational approaches, we could show that multidimensional flow cytometry might be a beneficial complement to the established diagnostic workup of autoimmune limbic encephalitis promoting early diagnosis and facilitating outcome prediction to enhance individualized treatment regimes.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"7 2","pages":"fcaf156"},"PeriodicalIF":4.1000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038345/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lymphocyte signatures correspond to clinical phenotypes in autoimmune limbic encephalitis.\",\"authors\":\"Saskia Räuber, Andreas Schulte-Mecklenbeck, Kelvin Sarink, Christoph Müller, Manoj Mannil, Lisa Langenbruch, Andre Dik, Sumanta Barman, Christine Strippel, Marco Gallus, Kristin S Golombeck, Christina B Schroeter, Alice Willison, Christopher Nelke, Fatme Seval Ismail, Wolfram Schwindt, Norbert Goebels, Stjepana Kovac, Heinz Wiendl, Gerd Meyer Zu Hörste, Thomas Duning, Michael Hanke, Tobias Ruck, Walter Heindel, Udo Dannlowski, Tim Hahn, Catharina C Gross, Sven G Meuth, Nico Melzer\",\"doi\":\"10.1093/braincomms/fcaf156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autoimmune limbic encephalitis is an inflammatory condition confined to the limbic system of the brain that is deemed to be due to a dysregulated immune response. However, the exact pathophysiological mechanisms remain elusive. Diagnosis of autoimmune limbic encephalitis currently relies on clinical consensus criteria. However, diagnostic workup can be challenging, potentially delaying treatment initiation associated with poor clinical outcomes. We retrospectively identified 640 patients (81 autoimmune limbic encephalitis, 148 relapsing-remitting multiple sclerosis, 197 Alzheimer's disease, 67 frontotemporal dementia, 37 temporal lobe epilepsy with hippocampal sclerosis and 110 somatic symptom disorder patients). Applying multidimensional flow-cytometry together with novel computational approaches, we analysed the peripheral blood and cerebrospinal fluid immune cell profiles at different disease stages and performed correlations with clinical parameters (i.e. neuropsychological performance, EEG and MRI). We were able to identify a shared immune signature of autoimmune limbic encephalitis showing similarities in adaptive B and T cell response with other inflammatory central nervous system diseases and in T cell patterns with neurodegenerative disorders. Antibody-negative autoimmune limbic encephalitis showed a pronounced T cell response in peripheral blood similar to temporal lobe epilepsy and hippocampal sclerosis and neurodegenerative disorders differentiating from antibody-positive autoimmune limbic encephalitis and classical inflammatory central nervous system diseases with regard to B and plasma cell response. Longitudinal immune cell phenotyping in autoimmune limbic encephalitis revealed dynamic changes over time mainly affecting the innate, B and plasma cell compartment. Correlation analysis indicated associations between the baseline immune cell profile, especially lymphocytes, and neuropsychological performance, as well as EEG and MRI abnormalities. Applying novel computational approaches, we found that multidimensional flow cytometry together with routine CSF parameters could reliably distinguish autoimmune limbic encephalitis from controls and clinical differential diagnoses. Incorporation of multidimensional flow cytometry parameters showed superior discriminatory ability compared with CSF routine parameters alone. Taken together, autoimmune limbic encephalitis is characterized by a B and T cell dominated intrathecal immune-cell signature corresponding to changes reported in the brain parenchyma and showing similarities with classical inflammatory central nervous system diseases and neurodegenerative disorders. Incorporating clinical parameters and applying novel computational approaches, we could show that multidimensional flow cytometry might be a beneficial complement to the established diagnostic workup of autoimmune limbic encephalitis promoting early diagnosis and facilitating outcome prediction to enhance individualized treatment regimes.</p>\",\"PeriodicalId\":93915,\"journal\":{\"name\":\"Brain communications\",\"volume\":\"7 2\",\"pages\":\"fcaf156\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038345/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/braincomms/fcaf156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcaf156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自身免疫性边缘脑炎是一种局限于大脑边缘系统的炎症,被认为是由于免疫反应失调引起的。然而,确切的病理生理机制仍然难以捉摸。自身免疫性边缘脑炎的诊断目前依赖于临床共识标准。然而,诊断检查可能具有挑战性,可能会延迟与不良临床结果相关的治疗开始。我们回顾性分析了640例患者(81例自身免疫性边缘脑炎,148例复发缓解型多发性硬化症,197例阿尔茨海默病,67例额颞叶痴呆,37例颞叶癫痫伴海马硬化和110例躯体症状障碍患者)。应用多维流式细胞术和新的计算方法,我们分析了不同疾病阶段的外周血和脑脊液免疫细胞谱,并与临床参数(即神经心理学表现、脑电图和MRI)进行了相关性分析。我们能够识别自身免疫性边缘脑炎的共同免疫特征,显示适应性B细胞和T细胞反应与其他炎症性中枢神经系统疾病相似,T细胞模式与神经退行性疾病相似。抗体阴性的自身免疫性边缘脑炎在外周血中表现出明显的T细胞反应,类似于颞叶癫痫、海马硬化和神经退行性疾病,在B细胞和浆细胞反应方面与抗体阳性的自身免疫性边缘脑炎和典型的炎症性中枢神经系统疾病有所区别。自身免疫性边缘脑炎的纵向免疫细胞表型揭示了主要影响先天、B细胞和浆细胞室的动态变化。相关分析表明,基线免疫细胞谱,特别是淋巴细胞,与神经心理表现以及脑电图和MRI异常之间存在关联。应用新颖的计算方法,我们发现多维流式细胞术与常规脑脊液参数可以可靠地区分自身免疫性边缘脑炎与对照组和临床鉴别诊断。与单独的脑脊液常规参数相比,结合多维流式细胞术参数具有更好的鉴别能力。综上所述,自身免疫性边缘脑炎以B细胞和T细胞为主的鞘内免疫细胞特征为特征,与脑实质的变化相对应,与经典的炎症性中枢神经系统疾病和神经退行性疾病相似。结合临床参数和应用新的计算方法,我们可以证明多维流式细胞术可能是自身免疫性边缘脑炎诊断工作的有益补充,促进早期诊断和促进结果预测,以加强个性化治疗方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lymphocyte signatures correspond to clinical phenotypes in autoimmune limbic encephalitis.

Autoimmune limbic encephalitis is an inflammatory condition confined to the limbic system of the brain that is deemed to be due to a dysregulated immune response. However, the exact pathophysiological mechanisms remain elusive. Diagnosis of autoimmune limbic encephalitis currently relies on clinical consensus criteria. However, diagnostic workup can be challenging, potentially delaying treatment initiation associated with poor clinical outcomes. We retrospectively identified 640 patients (81 autoimmune limbic encephalitis, 148 relapsing-remitting multiple sclerosis, 197 Alzheimer's disease, 67 frontotemporal dementia, 37 temporal lobe epilepsy with hippocampal sclerosis and 110 somatic symptom disorder patients). Applying multidimensional flow-cytometry together with novel computational approaches, we analysed the peripheral blood and cerebrospinal fluid immune cell profiles at different disease stages and performed correlations with clinical parameters (i.e. neuropsychological performance, EEG and MRI). We were able to identify a shared immune signature of autoimmune limbic encephalitis showing similarities in adaptive B and T cell response with other inflammatory central nervous system diseases and in T cell patterns with neurodegenerative disorders. Antibody-negative autoimmune limbic encephalitis showed a pronounced T cell response in peripheral blood similar to temporal lobe epilepsy and hippocampal sclerosis and neurodegenerative disorders differentiating from antibody-positive autoimmune limbic encephalitis and classical inflammatory central nervous system diseases with regard to B and plasma cell response. Longitudinal immune cell phenotyping in autoimmune limbic encephalitis revealed dynamic changes over time mainly affecting the innate, B and plasma cell compartment. Correlation analysis indicated associations between the baseline immune cell profile, especially lymphocytes, and neuropsychological performance, as well as EEG and MRI abnormalities. Applying novel computational approaches, we found that multidimensional flow cytometry together with routine CSF parameters could reliably distinguish autoimmune limbic encephalitis from controls and clinical differential diagnoses. Incorporation of multidimensional flow cytometry parameters showed superior discriminatory ability compared with CSF routine parameters alone. Taken together, autoimmune limbic encephalitis is characterized by a B and T cell dominated intrathecal immune-cell signature corresponding to changes reported in the brain parenchyma and showing similarities with classical inflammatory central nervous system diseases and neurodegenerative disorders. Incorporating clinical parameters and applying novel computational approaches, we could show that multidimensional flow cytometry might be a beneficial complement to the established diagnostic workup of autoimmune limbic encephalitis promoting early diagnosis and facilitating outcome prediction to enhance individualized treatment regimes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信