{"title":"脑缺血再灌注中的黄酮类化合物及其对激酶信号通路活性的影响。","authors":"Esra Gulsum Danis, Rasim Mogulkoc, Abdulkerim Kasim Baltaci","doi":"10.2174/0118715273374176250414051135","DOIUrl":null,"url":null,"abstract":"<p><p>Brain ischemia-reperfusion injury (CIRI) refers to brain ischemia that leads to cellular dysfunction and cell death after a certain period, and ischemic damage is rescued by providing blood supply and reperfusion. And then, reperfusion includes components such as ion imbalance, mitochondrial dysfunction, oxidative stress, neuroinflammation, Ca2+ overload, and apoptosis, which do not cause tissue damage. Autophagy also occurs in CIRI due to oxygen deficiency, and autophagy has been shown to protect cells from ischemic injury. Flavonoids are a class of essential and diversified secondary plant metabolites found in different concentrations in leaves, flowers, roots, and fruits. Various studies have shown that flavonoids have healing qualifications such as anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial. We aim to determine how flavonoids may affect signaling pathways and kinases in rats with CIRI. The results show that the activity of JAK2/STAT3, NF-κB, RhoA/ROCK, JNK-p38, and cAMKII signaling pathways increases under CIRI, and the PI3K/Akt/mTOR signaling pathway is suppressed. Studies using various flavonoids (kaempferol, chrysin, naringin, naringenin, quercetin, wogonin) have shown a neuroprotective effect by reversing the situation in signaling pathways during CIRI damage.</p>","PeriodicalId":93947,"journal":{"name":"CNS & neurological disorders drug targets","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flavonoids in Brain Ischemia-Reperfusion and their Effect on Kinases as Signaling Pathway Activity.\",\"authors\":\"Esra Gulsum Danis, Rasim Mogulkoc, Abdulkerim Kasim Baltaci\",\"doi\":\"10.2174/0118715273374176250414051135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brain ischemia-reperfusion injury (CIRI) refers to brain ischemia that leads to cellular dysfunction and cell death after a certain period, and ischemic damage is rescued by providing blood supply and reperfusion. And then, reperfusion includes components such as ion imbalance, mitochondrial dysfunction, oxidative stress, neuroinflammation, Ca2+ overload, and apoptosis, which do not cause tissue damage. Autophagy also occurs in CIRI due to oxygen deficiency, and autophagy has been shown to protect cells from ischemic injury. Flavonoids are a class of essential and diversified secondary plant metabolites found in different concentrations in leaves, flowers, roots, and fruits. Various studies have shown that flavonoids have healing qualifications such as anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial. We aim to determine how flavonoids may affect signaling pathways and kinases in rats with CIRI. The results show that the activity of JAK2/STAT3, NF-κB, RhoA/ROCK, JNK-p38, and cAMKII signaling pathways increases under CIRI, and the PI3K/Akt/mTOR signaling pathway is suppressed. Studies using various flavonoids (kaempferol, chrysin, naringin, naringenin, quercetin, wogonin) have shown a neuroprotective effect by reversing the situation in signaling pathways during CIRI damage.</p>\",\"PeriodicalId\":93947,\"journal\":{\"name\":\"CNS & neurological disorders drug targets\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS & neurological disorders drug targets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715273374176250414051135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS & neurological disorders drug targets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715273374176250414051135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flavonoids in Brain Ischemia-Reperfusion and their Effect on Kinases as Signaling Pathway Activity.
Brain ischemia-reperfusion injury (CIRI) refers to brain ischemia that leads to cellular dysfunction and cell death after a certain period, and ischemic damage is rescued by providing blood supply and reperfusion. And then, reperfusion includes components such as ion imbalance, mitochondrial dysfunction, oxidative stress, neuroinflammation, Ca2+ overload, and apoptosis, which do not cause tissue damage. Autophagy also occurs in CIRI due to oxygen deficiency, and autophagy has been shown to protect cells from ischemic injury. Flavonoids are a class of essential and diversified secondary plant metabolites found in different concentrations in leaves, flowers, roots, and fruits. Various studies have shown that flavonoids have healing qualifications such as anti-inflammatory, antimutagenic, anticarcinogenic, and antimicrobial. We aim to determine how flavonoids may affect signaling pathways and kinases in rats with CIRI. The results show that the activity of JAK2/STAT3, NF-κB, RhoA/ROCK, JNK-p38, and cAMKII signaling pathways increases under CIRI, and the PI3K/Akt/mTOR signaling pathway is suppressed. Studies using various flavonoids (kaempferol, chrysin, naringin, naringenin, quercetin, wogonin) have shown a neuroprotective effect by reversing the situation in signaling pathways during CIRI damage.