T R Kudriashova, A A Kryukov, A I Gorenkova, A P Yurkov
{"title":"水通道蛋白及其在植物-微生物系统中的作用。","authors":"T R Kudriashova, A A Kryukov, A I Gorenkova, A P Yurkov","doi":"10.18699/vjgb-25-27","DOIUrl":null,"url":null,"abstract":"<p><p>Global losses of agricultural products from water scarcity could be greater than from all other causes combined. Water deficiency in plants can result from insufficient precipitation, elevated air temperatures, and other factors that reduce the water available in the soil. Most terrestrial plants are able to form symbiosis with arbuscular mycorrhizal fungi. Arbuscular mycorrhiza plays a key role in the mineral nutrition of many terrestrial plant species. Water transport in plants is regulated primarily by aquaporins, transmembrane proteins. Aquaporins help plants save water, which is an important component of the plant's adaptation strategy to water scarcity. Some studies suggest that arbuscular mycorrhizal fungi can decrease the expression of aquaporin genes in plants under drought conditions, which reduces water transport within host plant tissues and conserves available water. On the other hand, there is little scientific evidence of the interaction mechanisms between plants and arbuscular mycorrhizal fungi during aquaporin regulation. In addition, the information in different sources on the aquaporin functions in different plant species may be contradictory. Plant aquaporins are represented by several subfamilies; their number varies for different species. A more comprehensive study of these transporters can enhance our understanding of water transport in plants and assess how arbuscular mycorrhizal fungi can influence it. This review contains data on the history of studies of the structure, localization, phylogeny, and functions of aquaporins. Advancing the study of the symbiotic system functioning may contribute to the development of biofertilizers based on soil microorganisms for agricultural uses in the Russian Federation.</p>","PeriodicalId":44339,"journal":{"name":"Vavilovskii Zhurnal Genetiki i Selektsii","volume":"29 2","pages":"238-247"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036568/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aquaporins and their role in plant-microbial systems.\",\"authors\":\"T R Kudriashova, A A Kryukov, A I Gorenkova, A P Yurkov\",\"doi\":\"10.18699/vjgb-25-27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Global losses of agricultural products from water scarcity could be greater than from all other causes combined. Water deficiency in plants can result from insufficient precipitation, elevated air temperatures, and other factors that reduce the water available in the soil. Most terrestrial plants are able to form symbiosis with arbuscular mycorrhizal fungi. Arbuscular mycorrhiza plays a key role in the mineral nutrition of many terrestrial plant species. Water transport in plants is regulated primarily by aquaporins, transmembrane proteins. Aquaporins help plants save water, which is an important component of the plant's adaptation strategy to water scarcity. Some studies suggest that arbuscular mycorrhizal fungi can decrease the expression of aquaporin genes in plants under drought conditions, which reduces water transport within host plant tissues and conserves available water. On the other hand, there is little scientific evidence of the interaction mechanisms between plants and arbuscular mycorrhizal fungi during aquaporin regulation. In addition, the information in different sources on the aquaporin functions in different plant species may be contradictory. Plant aquaporins are represented by several subfamilies; their number varies for different species. A more comprehensive study of these transporters can enhance our understanding of water transport in plants and assess how arbuscular mycorrhizal fungi can influence it. This review contains data on the history of studies of the structure, localization, phylogeny, and functions of aquaporins. Advancing the study of the symbiotic system functioning may contribute to the development of biofertilizers based on soil microorganisms for agricultural uses in the Russian Federation.</p>\",\"PeriodicalId\":44339,\"journal\":{\"name\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"volume\":\"29 2\",\"pages\":\"238-247\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036568/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vavilovskii Zhurnal Genetiki i Selektsii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18699/vjgb-25-27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vavilovskii Zhurnal Genetiki i Selektsii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18699/vjgb-25-27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Aquaporins and their role in plant-microbial systems.
Global losses of agricultural products from water scarcity could be greater than from all other causes combined. Water deficiency in plants can result from insufficient precipitation, elevated air temperatures, and other factors that reduce the water available in the soil. Most terrestrial plants are able to form symbiosis with arbuscular mycorrhizal fungi. Arbuscular mycorrhiza plays a key role in the mineral nutrition of many terrestrial plant species. Water transport in plants is regulated primarily by aquaporins, transmembrane proteins. Aquaporins help plants save water, which is an important component of the plant's adaptation strategy to water scarcity. Some studies suggest that arbuscular mycorrhizal fungi can decrease the expression of aquaporin genes in plants under drought conditions, which reduces water transport within host plant tissues and conserves available water. On the other hand, there is little scientific evidence of the interaction mechanisms between plants and arbuscular mycorrhizal fungi during aquaporin regulation. In addition, the information in different sources on the aquaporin functions in different plant species may be contradictory. Plant aquaporins are represented by several subfamilies; their number varies for different species. A more comprehensive study of these transporters can enhance our understanding of water transport in plants and assess how arbuscular mycorrhizal fungi can influence it. This review contains data on the history of studies of the structure, localization, phylogeny, and functions of aquaporins. Advancing the study of the symbiotic system functioning may contribute to the development of biofertilizers based on soil microorganisms for agricultural uses in the Russian Federation.
期刊介绍:
The "Vavilov Journal of genetics and breeding" publishes original research and review articles in all key areas of modern plant, animal and human genetics, genomics, bioinformatics and biotechnology. One of the main objectives of the journal is integration of theoretical and applied research in the field of genetics. Special attention is paid to the most topical areas in modern genetics dealing with global concerns such as food security and human health.