使用机器学习模型预测心脏移植的死亡率:系统回顾和荟萃分析。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-04-04 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1551959
Ida Mohammadi, Setayesh Farahani, Asal Karimi, Saina Jahanian, Shahryar Rajai Firouzabadi, Mohammadreza Alinejadfard, Alireza Fatemi, Bardia Hajikarimloo, Mohammadhosein Akhlaghpasand
{"title":"使用机器学习模型预测心脏移植的死亡率:系统回顾和荟萃分析。","authors":"Ida Mohammadi, Setayesh Farahani, Asal Karimi, Saina Jahanian, Shahryar Rajai Firouzabadi, Mohammadreza Alinejadfard, Alireza Fatemi, Bardia Hajikarimloo, Mohammadhosein Akhlaghpasand","doi":"10.3389/frai.2025.1551959","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Machine learning (ML) models have been increasingly applied to predict post-heart transplantation (HT) mortality, aiming to improve decision-making and optimize outcomes. This systematic review and meta-analysis evaluates the performance of ML algorithms in predicting mortality and explores factors contributing to model accuracy.</p><p><strong>Method: </strong>A systematic search of PubMed, Scopus, Web of Science, and Embase identified relevant studies, with 17 studies included in the review and 12 in the meta-analysis. The algorithms assessed included random forests, CatBoost, neural networks, and others. Model performance was evaluated using pooled area under the curve (AUC) values, with subgroup analyses for algorithm type, validation methods, and prediction timeframes. The risk of bias was assessed using the QUADAS-2 tool.</p><p><strong>Results: </strong>The pooled AUC of all ML algorithms was 0.65 (95% CI: 0.64, 0.67), with no significant difference between machine learning and deep learning models (<i>p</i> = 0.67). Among the algorithms, CatBoost demonstrated the highest accuracy (AUC 0.80, 95% CI: 0.74, 0.86), while K-nearest neighbor had the lowest accuracy (AUC 0.53, 95% CI: 0.50, 0.55). A meta-regression indicated improved model performance with longer post-transplant periods (<i>p</i> = 0.008). When pooling only the best-performing models, the AUC improved to 0.73 (95% CI: 0.68, 0.78). The risk of bias was high in eight studies, with the flow and timing domains most commonly contributing to bias.</p><p><strong>Conclusion: </strong>ML models demonstrate moderate accuracy in predicting post-HT mortality, with CatBoost achieving the best performance. While ML shows potential for improving predictive precision, significant heterogeneity and biases highlight the need for standardized methods and further external validations to enhance clinical applicability.</p><p><strong>Systematic review registration: </strong>https://www.crd.york.ac.uk/PROSPERO/view/CRD42024509630, CRD42024509630.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1551959"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006172/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mortality prediction of heart transplantation using machine learning models: a systematic review and meta-analysis.\",\"authors\":\"Ida Mohammadi, Setayesh Farahani, Asal Karimi, Saina Jahanian, Shahryar Rajai Firouzabadi, Mohammadreza Alinejadfard, Alireza Fatemi, Bardia Hajikarimloo, Mohammadhosein Akhlaghpasand\",\"doi\":\"10.3389/frai.2025.1551959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Machine learning (ML) models have been increasingly applied to predict post-heart transplantation (HT) mortality, aiming to improve decision-making and optimize outcomes. This systematic review and meta-analysis evaluates the performance of ML algorithms in predicting mortality and explores factors contributing to model accuracy.</p><p><strong>Method: </strong>A systematic search of PubMed, Scopus, Web of Science, and Embase identified relevant studies, with 17 studies included in the review and 12 in the meta-analysis. The algorithms assessed included random forests, CatBoost, neural networks, and others. Model performance was evaluated using pooled area under the curve (AUC) values, with subgroup analyses for algorithm type, validation methods, and prediction timeframes. The risk of bias was assessed using the QUADAS-2 tool.</p><p><strong>Results: </strong>The pooled AUC of all ML algorithms was 0.65 (95% CI: 0.64, 0.67), with no significant difference between machine learning and deep learning models (<i>p</i> = 0.67). Among the algorithms, CatBoost demonstrated the highest accuracy (AUC 0.80, 95% CI: 0.74, 0.86), while K-nearest neighbor had the lowest accuracy (AUC 0.53, 95% CI: 0.50, 0.55). A meta-regression indicated improved model performance with longer post-transplant periods (<i>p</i> = 0.008). When pooling only the best-performing models, the AUC improved to 0.73 (95% CI: 0.68, 0.78). The risk of bias was high in eight studies, with the flow and timing domains most commonly contributing to bias.</p><p><strong>Conclusion: </strong>ML models demonstrate moderate accuracy in predicting post-HT mortality, with CatBoost achieving the best performance. While ML shows potential for improving predictive precision, significant heterogeneity and biases highlight the need for standardized methods and further external validations to enhance clinical applicability.</p><p><strong>Systematic review registration: </strong>https://www.crd.york.ac.uk/PROSPERO/view/CRD42024509630, CRD42024509630.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"8 \",\"pages\":\"1551959\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006172/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2025.1551959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1551959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习(ML)模型越来越多地应用于预测心脏移植后(HT)死亡率,旨在改善决策和优化结果。本系统综述和荟萃分析评估了机器学习算法在预测死亡率方面的性能,并探讨了影响模型准确性的因素。方法:系统检索PubMed、Scopus、Web of Science、Embase等相关文献,综述纳入17项研究,meta分析纳入12项研究。评估的算法包括随机森林、CatBoost、神经网络等。使用曲线下的汇总面积(AUC)值评估模型性能,并对算法类型、验证方法和预测时间框架进行子组分析。使用QUADAS-2工具评估偏倚风险。结果:所有ML算法的合并AUC为0.65 (95% CI: 0.64, 0.67),机器学习和深度学习模型之间无显著差异(p = 0.67)。其中CatBoost算法的准确率最高(AUC 0.80, 95% CI: 0.74, 0.86), k近邻算法的准确率最低(AUC 0.53, 95% CI: 0.50, 0.55)。meta回归显示移植后时间越长,模型性能越好(p = 0.008)。当仅合并表现最好的模型时,AUC提高到0.73 (95% CI: 0.68, 0.78)。8项研究的偏倚风险较高,流域和时序域最常导致偏倚。结论:ML模型在预测ht后死亡率方面表现出中等的准确性,其中CatBoost表现最佳。虽然机器学习显示出提高预测精度的潜力,但显著的异质性和偏差突出了标准化方法和进一步的外部验证以提高临床适用性的必要性。系统评价注册:https://www.crd.york.ac.uk/PROSPERO/view/CRD42024509630, CRD42024509630。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mortality prediction of heart transplantation using machine learning models: a systematic review and meta-analysis.

Introduction: Machine learning (ML) models have been increasingly applied to predict post-heart transplantation (HT) mortality, aiming to improve decision-making and optimize outcomes. This systematic review and meta-analysis evaluates the performance of ML algorithms in predicting mortality and explores factors contributing to model accuracy.

Method: A systematic search of PubMed, Scopus, Web of Science, and Embase identified relevant studies, with 17 studies included in the review and 12 in the meta-analysis. The algorithms assessed included random forests, CatBoost, neural networks, and others. Model performance was evaluated using pooled area under the curve (AUC) values, with subgroup analyses for algorithm type, validation methods, and prediction timeframes. The risk of bias was assessed using the QUADAS-2 tool.

Results: The pooled AUC of all ML algorithms was 0.65 (95% CI: 0.64, 0.67), with no significant difference between machine learning and deep learning models (p = 0.67). Among the algorithms, CatBoost demonstrated the highest accuracy (AUC 0.80, 95% CI: 0.74, 0.86), while K-nearest neighbor had the lowest accuracy (AUC 0.53, 95% CI: 0.50, 0.55). A meta-regression indicated improved model performance with longer post-transplant periods (p = 0.008). When pooling only the best-performing models, the AUC improved to 0.73 (95% CI: 0.68, 0.78). The risk of bias was high in eight studies, with the flow and timing domains most commonly contributing to bias.

Conclusion: ML models demonstrate moderate accuracy in predicting post-HT mortality, with CatBoost achieving the best performance. While ML shows potential for improving predictive precision, significant heterogeneity and biases highlight the need for standardized methods and further external validations to enhance clinical applicability.

Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/view/CRD42024509630, CRD42024509630.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信