通过离子势的不对称性表征空间固定分子的光电子圆二色性。

IF 2.3 2区 物理与天体物理 Q3 CHEMISTRY, PHYSICAL
Structural Dynamics-Us Pub Date : 2025-04-18 eCollection Date: 2025-03-01 DOI:10.1063/4.0000300
Eric Kutscher, Anton N Artemyev, Philipp V Demekhin
{"title":"通过离子势的不对称性表征空间固定分子的光电子圆二色性。","authors":"Eric Kutscher, Anton N Artemyev, Philipp V Demekhin","doi":"10.1063/4.0000300","DOIUrl":null,"url":null,"abstract":"<p><p>Photoelectron circular dichroism (PECD) in the ionization of chiral molecules by circularly polarized radiation is a well-established tool for chiral recognition in the gas phase. The effect consists in a forward-backward asymmetry in angular emission distributions of photoelectrons with respect to the light propagation direction, which survives averaging over molecular orientations. Its magnitude is governed by the ability of the outgoing photoelectron to probe an asymmetry of the ionic potential by multiple scattering effects, and it can be significantly enhanced by fixing molecular orientation in space. Even achiral fixed-in-space molecules can exhibit such a forward-backward asymmetry in the photoemission. In the present work, we establish a qualitative correspondence between the PECD in one-photon ionization of fixed-in-space molecules and a degree of the asymmetry of their ionic potential. For this purpose, we introduce an enantiosensitive dichroic characteristic of the ionic potential, which describes a physical mechanism behind the forward-backward asymmetry in the photoemission from fixed-in-space molecules ionized by circularly polarized light. This characteristic, as a function of molecular orientation angles, can be compared to the respective PECD landscape. The present findings are exemplified by several applications to achiral and chiral species.</p>","PeriodicalId":48683,"journal":{"name":"Structural Dynamics-Us","volume":"12 2","pages":"024102"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009146/pdf/","citationCount":"0","resultStr":"{\"title\":\"Characterization of the photoelectron circular dichroism of fixed-in-space molecules through an asymmetry of the ionic potential.\",\"authors\":\"Eric Kutscher, Anton N Artemyev, Philipp V Demekhin\",\"doi\":\"10.1063/4.0000300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photoelectron circular dichroism (PECD) in the ionization of chiral molecules by circularly polarized radiation is a well-established tool for chiral recognition in the gas phase. The effect consists in a forward-backward asymmetry in angular emission distributions of photoelectrons with respect to the light propagation direction, which survives averaging over molecular orientations. Its magnitude is governed by the ability of the outgoing photoelectron to probe an asymmetry of the ionic potential by multiple scattering effects, and it can be significantly enhanced by fixing molecular orientation in space. Even achiral fixed-in-space molecules can exhibit such a forward-backward asymmetry in the photoemission. In the present work, we establish a qualitative correspondence between the PECD in one-photon ionization of fixed-in-space molecules and a degree of the asymmetry of their ionic potential. For this purpose, we introduce an enantiosensitive dichroic characteristic of the ionic potential, which describes a physical mechanism behind the forward-backward asymmetry in the photoemission from fixed-in-space molecules ionized by circularly polarized light. This characteristic, as a function of molecular orientation angles, can be compared to the respective PECD landscape. The present findings are exemplified by several applications to achiral and chiral species.</p>\",\"PeriodicalId\":48683,\"journal\":{\"name\":\"Structural Dynamics-Us\",\"volume\":\"12 2\",\"pages\":\"024102\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12009146/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Dynamics-Us\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/4.0000300\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics-Us","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/4.0000300","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

圆极化辐射电离手性分子的光电子圆二色性(PECD)是一种成熟的气相手性识别工具。这种效应包括光电子的角发射分布相对于光传播方向的前后不对称,这种不对称在分子取向上平均下来。它的大小取决于出射光电子通过多重散射效应探测离子势的不对称性的能力,并且可以通过在空间中固定分子取向来显着增强它。即使是非手性的空间固定分子在光发射中也会表现出这种前后不对称。在本研究中,我们建立了固定空间分子单光子电离的PECD与它们的离子势的一定程度的不对称性之间的定性对应关系。为此,我们引入了离子势的对映敏感二色性特征,它描述了在圆偏振光电离的空间固定分子的光发射中前后不对称的物理机制。这种特性作为分子取向角的函数,可以与各自的PECD景观进行比较。本文的研究结果在非手性和手性物种上得到了应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterization of the photoelectron circular dichroism of fixed-in-space molecules through an asymmetry of the ionic potential.

Photoelectron circular dichroism (PECD) in the ionization of chiral molecules by circularly polarized radiation is a well-established tool for chiral recognition in the gas phase. The effect consists in a forward-backward asymmetry in angular emission distributions of photoelectrons with respect to the light propagation direction, which survives averaging over molecular orientations. Its magnitude is governed by the ability of the outgoing photoelectron to probe an asymmetry of the ionic potential by multiple scattering effects, and it can be significantly enhanced by fixing molecular orientation in space. Even achiral fixed-in-space molecules can exhibit such a forward-backward asymmetry in the photoemission. In the present work, we establish a qualitative correspondence between the PECD in one-photon ionization of fixed-in-space molecules and a degree of the asymmetry of their ionic potential. For this purpose, we introduce an enantiosensitive dichroic characteristic of the ionic potential, which describes a physical mechanism behind the forward-backward asymmetry in the photoemission from fixed-in-space molecules ionized by circularly polarized light. This characteristic, as a function of molecular orientation angles, can be compared to the respective PECD landscape. The present findings are exemplified by several applications to achiral and chiral species.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Dynamics-Us
Structural Dynamics-Us CHEMISTRY, PHYSICALPHYSICS, ATOMIC, MOLECU-PHYSICS, ATOMIC, MOLECULAR & CHEMICAL
CiteScore
5.50
自引率
3.60%
发文量
24
审稿时长
16 weeks
期刊介绍: Structural Dynamics focuses on the recent developments in experimental and theoretical methods and techniques that allow a visualization of the electronic and geometric structural changes in real time of chemical, biological, and condensed-matter systems. The community of scientists and engineers working on structural dynamics in such diverse systems often use similar instrumentation and methods. The journal welcomes articles dealing with fundamental problems of electronic and structural dynamics that are tackled by new methods, such as: Time-resolved X-ray and electron diffraction and scattering, Coherent diffractive imaging, Time-resolved X-ray spectroscopies (absorption, emission, resonant inelastic scattering, etc.), Time-resolved electron energy loss spectroscopy (EELS) and electron microscopy, Time-resolved photoelectron spectroscopies (UPS, XPS, ARPES, etc.), Multidimensional spectroscopies in the infrared, the visible and the ultraviolet, Nonlinear spectroscopies in the VUV, the soft and the hard X-ray domains, Theory and computational methods and algorithms for the analysis and description of structuraldynamics and their associated experimental signals. These new methods are enabled by new instrumentation, such as: X-ray free electron lasers, which provide flux, coherence, and time resolution, New sources of ultrashort electron pulses, New sources of ultrashort vacuum ultraviolet (VUV) to hard X-ray pulses, such as high-harmonic generation (HHG) sources or plasma-based sources, New sources of ultrashort infrared and terahertz (THz) radiation, New detectors for X-rays and electrons, New sample handling and delivery schemes, New computational capabilities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信