将随机临床试验的比较有效性推广到现实世界中符合试验条件的人群的实用分析程序。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Kuan Jiang, Xin-Xing Lai, Shu Yang, Ying Gao, Xiao-Hua Zhou
{"title":"将随机临床试验的比较有效性推广到现实世界中符合试验条件的人群的实用分析程序。","authors":"Kuan Jiang, Xin-Xing Lai, Shu Yang, Ying Gao, Xiao-Hua Zhou","doi":"10.1080/10543406.2025.2489282","DOIUrl":null,"url":null,"abstract":"<p><p>When evaluating the effectiveness of a drug, a randomized controlled trial (RCT) is often considered the gold standard due to its ability to balance effect modifiers through randomization. While RCT assures strong internal validity, its restricted external validity poses challenges in extending treatment effects to the broader real-world population due to possible heterogeneity in covariates. In this paper, we introduce a procedure to generalize the RCT findings to the real-world trial-eligible population based on the adaption of existing statistical methods. We utilized the augmented inversed probability of sampling weighting (AIPSW) estimator for the estimation and omitted variable bias framework to assess the robustness of the estimate against the assumption violation caused by potentially unmeasured confounders. We analyzed an RCT comparing the effectiveness of lowering hypertension between Songling Xuemaikang Capsule (SXC) - a traditional Chinese medicine (TCM), and Losartan as an illustration. Based on current evidence, the generalization results indicated that by adjusting covariates distribution shift, although SXC is less effective in lowering blood pressure than Losartan on week 2, there is no statistically significant difference among the trial-eligible population at weeks 4-8. In addition, sensitivity analysis further demonstrated that the generalization is robust against potential unmeasured confounders.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-13"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical analysis procedure on generalizing comparative effectiveness in the randomized clinical trial to the real-world trial-eligible population.\",\"authors\":\"Kuan Jiang, Xin-Xing Lai, Shu Yang, Ying Gao, Xiao-Hua Zhou\",\"doi\":\"10.1080/10543406.2025.2489282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When evaluating the effectiveness of a drug, a randomized controlled trial (RCT) is often considered the gold standard due to its ability to balance effect modifiers through randomization. While RCT assures strong internal validity, its restricted external validity poses challenges in extending treatment effects to the broader real-world population due to possible heterogeneity in covariates. In this paper, we introduce a procedure to generalize the RCT findings to the real-world trial-eligible population based on the adaption of existing statistical methods. We utilized the augmented inversed probability of sampling weighting (AIPSW) estimator for the estimation and omitted variable bias framework to assess the robustness of the estimate against the assumption violation caused by potentially unmeasured confounders. We analyzed an RCT comparing the effectiveness of lowering hypertension between Songling Xuemaikang Capsule (SXC) - a traditional Chinese medicine (TCM), and Losartan as an illustration. Based on current evidence, the generalization results indicated that by adjusting covariates distribution shift, although SXC is less effective in lowering blood pressure than Losartan on week 2, there is no statistically significant difference among the trial-eligible population at weeks 4-8. In addition, sensitivity analysis further demonstrated that the generalization is robust against potential unmeasured confounders.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2025.2489282\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2489282","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

当评估一种药物的有效性时,随机对照试验(RCT)通常被认为是金标准,因为它能够通过随机化来平衡效果调节剂。虽然RCT保证了强大的内部效度,但由于协变量可能存在异质性,其有限的外部效度给将治疗效果扩展到更广泛的现实世界人群带来了挑战。在本文中,我们介绍了一种基于现有统计方法的程序,将RCT结果推广到现实世界中符合试验条件的人群。我们利用增广抽样加权逆概率(AIPSW)估计器进行估计,并省略变量偏差框架来评估估计对潜在未测量混杂因素造成的假设违反的鲁棒性。我们分析了一项比较中药松龄血脉康胶囊(SXC)与氯沙坦降高血压疗效的随机对照试验。基于目前的证据,泛化结果表明,通过调整协变量分布移位,尽管在第2周时,SXC的降压效果低于氯沙坦,但在第4-8周时,在符合试验条件的人群中,差异无统计学意义。此外,敏感性分析进一步表明,对于潜在的未测量混杂因素,泛化是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A practical analysis procedure on generalizing comparative effectiveness in the randomized clinical trial to the real-world trial-eligible population.

When evaluating the effectiveness of a drug, a randomized controlled trial (RCT) is often considered the gold standard due to its ability to balance effect modifiers through randomization. While RCT assures strong internal validity, its restricted external validity poses challenges in extending treatment effects to the broader real-world population due to possible heterogeneity in covariates. In this paper, we introduce a procedure to generalize the RCT findings to the real-world trial-eligible population based on the adaption of existing statistical methods. We utilized the augmented inversed probability of sampling weighting (AIPSW) estimator for the estimation and omitted variable bias framework to assess the robustness of the estimate against the assumption violation caused by potentially unmeasured confounders. We analyzed an RCT comparing the effectiveness of lowering hypertension between Songling Xuemaikang Capsule (SXC) - a traditional Chinese medicine (TCM), and Losartan as an illustration. Based on current evidence, the generalization results indicated that by adjusting covariates distribution shift, although SXC is less effective in lowering blood pressure than Losartan on week 2, there is no statistically significant difference among the trial-eligible population at weeks 4-8. In addition, sensitivity analysis further demonstrated that the generalization is robust against potential unmeasured confounders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信