{"title":"大语言模型时代的生物医学自然语言处理。","authors":"Naoto Usuyama, Cliff Wong, Sheng Zhang, Tristan Naumann, Hoifung Poon","doi":"10.1146/annurev-biodatasci-103123-095406","DOIUrl":null,"url":null,"abstract":"<p><p>Biomedicine has rapidly digitized over recent decades, from genomic sequencing to electronic medical records. Now, the rise of large language models (LLMs) is driving a generative artificial intelligence (AI) revolution in natural language processing (NLP). Together, these trends create unprecedented possibilities to optimize patient care and accelerate biomedical discovery. Biomedical NLP already boosts productivity by automating labor-intensive tasks such as knowledge extraction and medical abstraction. Emerging approaches promise creativity gain, surpassing standard healthcare practices and uncovering emergent capabilities through Web-scale biomedical knowledge and population-level patient data. However, LLMs remain prone to hallucinations and omissions, and ensuring compliance and safety is vital in order to do no harm. Incorporating diverse modalities such as imaging and genomics is also essential for comprehensive solutions. We review these challenges and opportunities in biomedical NLP, offering historical context, surveying the current state of the art, and exploring frontiers for AI researchers and biomedical practitioners.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomedical Natural Language Processing in the Era of Large Language Models.\",\"authors\":\"Naoto Usuyama, Cliff Wong, Sheng Zhang, Tristan Naumann, Hoifung Poon\",\"doi\":\"10.1146/annurev-biodatasci-103123-095406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomedicine has rapidly digitized over recent decades, from genomic sequencing to electronic medical records. Now, the rise of large language models (LLMs) is driving a generative artificial intelligence (AI) revolution in natural language processing (NLP). Together, these trends create unprecedented possibilities to optimize patient care and accelerate biomedical discovery. Biomedical NLP already boosts productivity by automating labor-intensive tasks such as knowledge extraction and medical abstraction. Emerging approaches promise creativity gain, surpassing standard healthcare practices and uncovering emergent capabilities through Web-scale biomedical knowledge and population-level patient data. However, LLMs remain prone to hallucinations and omissions, and ensuring compliance and safety is vital in order to do no harm. Incorporating diverse modalities such as imaging and genomics is also essential for comprehensive solutions. We review these challenges and opportunities in biomedical NLP, offering historical context, surveying the current state of the art, and exploring frontiers for AI researchers and biomedical practitioners.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-103123-095406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-103123-095406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Biomedical Natural Language Processing in the Era of Large Language Models.
Biomedicine has rapidly digitized over recent decades, from genomic sequencing to electronic medical records. Now, the rise of large language models (LLMs) is driving a generative artificial intelligence (AI) revolution in natural language processing (NLP). Together, these trends create unprecedented possibilities to optimize patient care and accelerate biomedical discovery. Biomedical NLP already boosts productivity by automating labor-intensive tasks such as knowledge extraction and medical abstraction. Emerging approaches promise creativity gain, surpassing standard healthcare practices and uncovering emergent capabilities through Web-scale biomedical knowledge and population-level patient data. However, LLMs remain prone to hallucinations and omissions, and ensuring compliance and safety is vital in order to do no harm. Incorporating diverse modalities such as imaging and genomics is also essential for comprehensive solutions. We review these challenges and opportunities in biomedical NLP, offering historical context, surveying the current state of the art, and exploring frontiers for AI researchers and biomedical practitioners.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.