Lev Korolkov, Heather A Robinson, Konstantinos Mouratis
{"title":"在真实世界数据和预测模型的帮助下,开发用于前列腺癌患者管理的数字治疗分析仪。","authors":"Lev Korolkov, Heather A Robinson, Konstantinos Mouratis","doi":"10.1177/20552076251326021","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer is the second most diagnosed cancer in the world. Treatment guidelines involve a multitude of therapies, however adherence to them is not fully established, while lack of personalized treatment strategies fails to put the patient as an individual clinical profile at the center of their treatment. We aim to present the concept of a digital treatment analyzer (TA) for the management of prostate cancer (PC) patients, leveraging real-world data (RWD) and predictive modeling to enhance personalized disease management strategies and adherence to PC guidelines, ultimately aiming to optimize therapeutic efficacy and improve outcomes. The TA comprises digital tools integrated into one user-intuitive interface, facilitating the development of patient-specific clinical profiles, classification of patients into matched historical RWD cohorts, presentation of relevant clinical guidelines, visual representation of treatment and outcomes, and mortality risk prediction based on a validated machine learning models. The Medical Information Mart for Intensive Care (MIMIC) IV dataset was utilized, including structured and unstructured data from the patient journey. The developed TA represents a promising approach to enhance personalized disease management strategies and adherence to PC guidelines. By integrating contemporary clinical guidelines, RWD and AI-driven insights, our digital TA aims to optimize therapeutic efficacy and improve patient outcomes. The presented concept demonstrates the potential for using a digital approach that integrates RWD into a treatment journey, to provide healthcare stakeholders with a holistic approach to PC management involving all available modern tools to achieve optimal outcomes.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251326021"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034955/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of a digital treatment analyzer for the management of prostate cancer patients, with the help of real world data and use of predictive modelling.\",\"authors\":\"Lev Korolkov, Heather A Robinson, Konstantinos Mouratis\",\"doi\":\"10.1177/20552076251326021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prostate cancer is the second most diagnosed cancer in the world. Treatment guidelines involve a multitude of therapies, however adherence to them is not fully established, while lack of personalized treatment strategies fails to put the patient as an individual clinical profile at the center of their treatment. We aim to present the concept of a digital treatment analyzer (TA) for the management of prostate cancer (PC) patients, leveraging real-world data (RWD) and predictive modeling to enhance personalized disease management strategies and adherence to PC guidelines, ultimately aiming to optimize therapeutic efficacy and improve outcomes. The TA comprises digital tools integrated into one user-intuitive interface, facilitating the development of patient-specific clinical profiles, classification of patients into matched historical RWD cohorts, presentation of relevant clinical guidelines, visual representation of treatment and outcomes, and mortality risk prediction based on a validated machine learning models. The Medical Information Mart for Intensive Care (MIMIC) IV dataset was utilized, including structured and unstructured data from the patient journey. The developed TA represents a promising approach to enhance personalized disease management strategies and adherence to PC guidelines. By integrating contemporary clinical guidelines, RWD and AI-driven insights, our digital TA aims to optimize therapeutic efficacy and improve patient outcomes. The presented concept demonstrates the potential for using a digital approach that integrates RWD into a treatment journey, to provide healthcare stakeholders with a holistic approach to PC management involving all available modern tools to achieve optimal outcomes.</p>\",\"PeriodicalId\":51333,\"journal\":{\"name\":\"DIGITAL HEALTH\",\"volume\":\"11 \",\"pages\":\"20552076251326021\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12034955/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DIGITAL HEALTH\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/20552076251326021\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251326021","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Development of a digital treatment analyzer for the management of prostate cancer patients, with the help of real world data and use of predictive modelling.
Prostate cancer is the second most diagnosed cancer in the world. Treatment guidelines involve a multitude of therapies, however adherence to them is not fully established, while lack of personalized treatment strategies fails to put the patient as an individual clinical profile at the center of their treatment. We aim to present the concept of a digital treatment analyzer (TA) for the management of prostate cancer (PC) patients, leveraging real-world data (RWD) and predictive modeling to enhance personalized disease management strategies and adherence to PC guidelines, ultimately aiming to optimize therapeutic efficacy and improve outcomes. The TA comprises digital tools integrated into one user-intuitive interface, facilitating the development of patient-specific clinical profiles, classification of patients into matched historical RWD cohorts, presentation of relevant clinical guidelines, visual representation of treatment and outcomes, and mortality risk prediction based on a validated machine learning models. The Medical Information Mart for Intensive Care (MIMIC) IV dataset was utilized, including structured and unstructured data from the patient journey. The developed TA represents a promising approach to enhance personalized disease management strategies and adherence to PC guidelines. By integrating contemporary clinical guidelines, RWD and AI-driven insights, our digital TA aims to optimize therapeutic efficacy and improve patient outcomes. The presented concept demonstrates the potential for using a digital approach that integrates RWD into a treatment journey, to provide healthcare stakeholders with a holistic approach to PC management involving all available modern tools to achieve optimal outcomes.