非线性物理系统控制方程的双水平辨识。

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Zeyu Li, Huining Yuan, Wang Han, Yimin Hou, Hongjue Li, Haidong Ding, Zhiguo Jiang, Lijun Yang
{"title":"非线性物理系统控制方程的双水平辨识。","authors":"Zeyu Li, Huining Yuan, Wang Han, Yimin Hou, Hongjue Li, Haidong Ding, Zhiguo Jiang, Lijun Yang","doi":"10.1038/s43588-025-00804-x","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying governing equations from observational data is crucial for understanding nonlinear physical systems but remains challenging due to the risk of overfitting. Here we introduce the Bi-Level Identification of Equations (BILLIE) framework, which simultaneously discovers and validates equations using a hierarchical optimization strategy. The policy gradient algorithm of reinforcement learning is leveraged to achieve the bi-level optimization. We demonstrate BILLIE's superior performance through comparisons with baseline methods in canonical nonlinear systems such as turbulent flows and three-body systems. Furthermore, we apply the BILLIE framework to discover RNA and protein velocity equations directly from single-cell sequencing data. The equations identified by BILLIE outperform empirical models in predicting cellular differentiation states, underscoring BILLIE's potential to reveal fundamental physical laws across a wide range of scientific fields.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi-level identification of governing equations for nonlinear physical systems.\",\"authors\":\"Zeyu Li, Huining Yuan, Wang Han, Yimin Hou, Hongjue Li, Haidong Ding, Zhiguo Jiang, Lijun Yang\",\"doi\":\"10.1038/s43588-025-00804-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identifying governing equations from observational data is crucial for understanding nonlinear physical systems but remains challenging due to the risk of overfitting. Here we introduce the Bi-Level Identification of Equations (BILLIE) framework, which simultaneously discovers and validates equations using a hierarchical optimization strategy. The policy gradient algorithm of reinforcement learning is leveraged to achieve the bi-level optimization. We demonstrate BILLIE's superior performance through comparisons with baseline methods in canonical nonlinear systems such as turbulent flows and three-body systems. Furthermore, we apply the BILLIE framework to discover RNA and protein velocity equations directly from single-cell sequencing data. The equations identified by BILLIE outperform empirical models in predicting cellular differentiation states, underscoring BILLIE's potential to reveal fundamental physical laws across a wide range of scientific fields.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00804-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00804-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

从观测数据中识别控制方程对于理解非线性物理系统至关重要,但由于过度拟合的风险,仍然具有挑战性。在这里,我们介绍了双级方程识别(BILLIE)框架,该框架使用分层优化策略同时发现和验证方程。利用强化学习的策略梯度算法实现双级优化。通过与基准方法在典型非线性系统(如湍流和三体系统)中的比较,我们证明了BILLIE的优越性能。此外,我们应用BILLIE框架直接从单细胞测序数据中发现RNA和蛋白质速度方程。由BILLIE确定的方程在预测细胞分化状态方面优于经验模型,强调BILLIE在广泛的科学领域揭示基本物理定律的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-level identification of governing equations for nonlinear physical systems.

Identifying governing equations from observational data is crucial for understanding nonlinear physical systems but remains challenging due to the risk of overfitting. Here we introduce the Bi-Level Identification of Equations (BILLIE) framework, which simultaneously discovers and validates equations using a hierarchical optimization strategy. The policy gradient algorithm of reinforcement learning is leveraged to achieve the bi-level optimization. We demonstrate BILLIE's superior performance through comparisons with baseline methods in canonical nonlinear systems such as turbulent flows and three-body systems. Furthermore, we apply the BILLIE framework to discover RNA and protein velocity equations directly from single-cell sequencing data. The equations identified by BILLIE outperform empirical models in predicting cellular differentiation states, underscoring BILLIE's potential to reveal fundamental physical laws across a wide range of scientific fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信