人工椎间盘的仿生进化研究进展。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ashutosh Khanna, Pushpdant Jain, C P Paul
{"title":"人工椎间盘的仿生进化研究进展。","authors":"Ashutosh Khanna, Pushpdant Jain, C P Paul","doi":"10.1007/s11517-025-03371-5","DOIUrl":null,"url":null,"abstract":"<p><p>In lumbar total disc replacement, artificial disc implants are utilized to cure degenerative disc disease and restore natural motion. Human intervertebral discs (IVD) are part of the spine and contribute to delivering six degrees of freedom, elastic deformation, and shock absorption and act differently under different load conditions. Despite advancements in spinal fixation systems and IVD replacement techniques, achieving long-term segmental stability while preserving physiological motion remains a significant challenge. To overcome this issue, the proposed work aims to identify the biomechanics of artificial IVD implants through rigorous analysis. The ultimate goal is to provide the information to explore the design and develop novel implants that seamlessly integrate with the spine, restoring natural spine function and providing long-term, sustainable load-bearing properties, mimicking the resilience and longevity of the natural IVD. To address all these issues, a comprehensive review of the literature was conducted, organizing findings based on body structure, associated diseases, biomechanics, and various IVD development models. The present endeavour involves a critical analysis with the aim of facilitating the input to the design and development of novel IVD implants in the future.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards biomimetic evolution of artificial intervertebral disc: a review.\",\"authors\":\"Ashutosh Khanna, Pushpdant Jain, C P Paul\",\"doi\":\"10.1007/s11517-025-03371-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In lumbar total disc replacement, artificial disc implants are utilized to cure degenerative disc disease and restore natural motion. Human intervertebral discs (IVD) are part of the spine and contribute to delivering six degrees of freedom, elastic deformation, and shock absorption and act differently under different load conditions. Despite advancements in spinal fixation systems and IVD replacement techniques, achieving long-term segmental stability while preserving physiological motion remains a significant challenge. To overcome this issue, the proposed work aims to identify the biomechanics of artificial IVD implants through rigorous analysis. The ultimate goal is to provide the information to explore the design and develop novel implants that seamlessly integrate with the spine, restoring natural spine function and providing long-term, sustainable load-bearing properties, mimicking the resilience and longevity of the natural IVD. To address all these issues, a comprehensive review of the literature was conducted, organizing findings based on body structure, associated diseases, biomechanics, and various IVD development models. The present endeavour involves a critical analysis with the aim of facilitating the input to the design and development of novel IVD implants in the future.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03371-5\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03371-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

在腰椎全椎间盘置换术中,人工椎间盘植入物用于治疗退行性椎间盘疾病并恢复自然运动。人类椎间盘(IVD)是脊柱的一部分,有助于提供六个自由度,弹性变形和减震,并且在不同的负载条件下表现不同。尽管脊柱固定系统和IVD替代技术取得了进步,但在保持生理运动的同时实现长期节段稳定性仍然是一个重大挑战。为了克服这一问题,提出的工作旨在通过严格的分析来确定人工IVD植入物的生物力学。最终目标是为探索设计和开发与脊柱无缝集成的新型植入物提供信息,恢复自然脊柱功能,并提供长期,可持续的承重性能,模仿自然IVD的弹性和寿命。为了解决所有这些问题,我们进行了一项全面的文献综述,根据身体结构、相关疾病、生物力学和各种IVD发展模型组织研究结果。目前的努力包括一个关键的分析,目的是促进输入的设计和开发新的IVD植入物在未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards biomimetic evolution of artificial intervertebral disc: a review.

In lumbar total disc replacement, artificial disc implants are utilized to cure degenerative disc disease and restore natural motion. Human intervertebral discs (IVD) are part of the spine and contribute to delivering six degrees of freedom, elastic deformation, and shock absorption and act differently under different load conditions. Despite advancements in spinal fixation systems and IVD replacement techniques, achieving long-term segmental stability while preserving physiological motion remains a significant challenge. To overcome this issue, the proposed work aims to identify the biomechanics of artificial IVD implants through rigorous analysis. The ultimate goal is to provide the information to explore the design and develop novel implants that seamlessly integrate with the spine, restoring natural spine function and providing long-term, sustainable load-bearing properties, mimicking the resilience and longevity of the natural IVD. To address all these issues, a comprehensive review of the literature was conducted, organizing findings based on body structure, associated diseases, biomechanics, and various IVD development models. The present endeavour involves a critical analysis with the aim of facilitating the input to the design and development of novel IVD implants in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信