{"title":"一种改进的生物标志物引导的肿瘤试验适应性患者富集设计。","authors":"Zhenwei Zhou, Zhaoyang Teng, Jian Zhu, Rui Sammi Tang","doi":"10.1080/10543406.2025.2489292","DOIUrl":null,"url":null,"abstract":"<p><p>The use of biomarkers to guide adaptive enrichment designs in oncology trials presents a promising strategy for increasing trial efficiency and improving the chance of identifying efficacious treatment in the right population. With a well-defined biomarker, such designs can enhance study power and reduce costs by adapting the trial focus to promising populations. However, existing adaptive enrichment designs may not have sufficiently flexible interim decision-making rules, testing procedures, and sample size re-estimation, limiting their full potential. In this research, we propose an improved biomarker-guided adaptive enrichment design that supports dynamic interim decision-making based on treatment effects observed in biomarker-positive, biomarker-negative, and overall populations. The design includes options for early stopping for efficacy or futility in both biomarker-positive and overall populations and incorporates sample size re-estimation using an improved conditional power method to optimize study power. Simulation results show that the proposed design maintains strong control of type I error and delivers high statistical power, with a high probability of correct interim decisions in cases where treatment is effective in either the biomarker-positive or overall population. This novel framework provides a more flexible and efficient approach to conducting oncology trials with heterogenous populations, ensuring that the most appropriate patient populations are selected as the trial progresses.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-17"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved biomarker-guided adaptive patient enrichment design for oncology trials.\",\"authors\":\"Zhenwei Zhou, Zhaoyang Teng, Jian Zhu, Rui Sammi Tang\",\"doi\":\"10.1080/10543406.2025.2489292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of biomarkers to guide adaptive enrichment designs in oncology trials presents a promising strategy for increasing trial efficiency and improving the chance of identifying efficacious treatment in the right population. With a well-defined biomarker, such designs can enhance study power and reduce costs by adapting the trial focus to promising populations. However, existing adaptive enrichment designs may not have sufficiently flexible interim decision-making rules, testing procedures, and sample size re-estimation, limiting their full potential. In this research, we propose an improved biomarker-guided adaptive enrichment design that supports dynamic interim decision-making based on treatment effects observed in biomarker-positive, biomarker-negative, and overall populations. The design includes options for early stopping for efficacy or futility in both biomarker-positive and overall populations and incorporates sample size re-estimation using an improved conditional power method to optimize study power. Simulation results show that the proposed design maintains strong control of type I error and delivers high statistical power, with a high probability of correct interim decisions in cases where treatment is effective in either the biomarker-positive or overall population. This novel framework provides a more flexible and efficient approach to conducting oncology trials with heterogenous populations, ensuring that the most appropriate patient populations are selected as the trial progresses.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2025.2489292\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2489292","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
An improved biomarker-guided adaptive patient enrichment design for oncology trials.
The use of biomarkers to guide adaptive enrichment designs in oncology trials presents a promising strategy for increasing trial efficiency and improving the chance of identifying efficacious treatment in the right population. With a well-defined biomarker, such designs can enhance study power and reduce costs by adapting the trial focus to promising populations. However, existing adaptive enrichment designs may not have sufficiently flexible interim decision-making rules, testing procedures, and sample size re-estimation, limiting their full potential. In this research, we propose an improved biomarker-guided adaptive enrichment design that supports dynamic interim decision-making based on treatment effects observed in biomarker-positive, biomarker-negative, and overall populations. The design includes options for early stopping for efficacy or futility in both biomarker-positive and overall populations and incorporates sample size re-estimation using an improved conditional power method to optimize study power. Simulation results show that the proposed design maintains strong control of type I error and delivers high statistical power, with a high probability of correct interim decisions in cases where treatment is effective in either the biomarker-positive or overall population. This novel framework provides a more flexible and efficient approach to conducting oncology trials with heterogenous populations, ensuring that the most appropriate patient populations are selected as the trial progresses.
期刊介绍:
The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers:
Drug, device, and biological research and development;
Drug screening and drug design;
Assessment of pharmacological activity;
Pharmaceutical formulation and scale-up;
Preclinical safety assessment;
Bioavailability, bioequivalence, and pharmacokinetics;
Phase, I, II, and III clinical development including complex innovative designs;
Premarket approval assessment of clinical safety;
Postmarketing surveillance;
Big data and artificial intelligence and applications.