不要用法学硕士来做相关性判断。

Ian Soboroff
{"title":"不要用法学硕士来做相关性判断。","authors":"Ian Soboroff","doi":"10.54195/irrj.19625","DOIUrl":null,"url":null,"abstract":"<p><p>Relevance judgments and other truth data for information retrieval (IR) evaluations are created manually. There is a strong temptation to use large language models (LLMs) as proxies for human judges. However, letting the LLM write your truth data handicaps the evaluation by setting that LLM as a ceiling on performance. There are ways to use LLMs in the relevance assessment process, but just generating relevance judgments with a prompt isn't one of them.</p>","PeriodicalId":520515,"journal":{"name":"Information retrieval research journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984504/pdf/","citationCount":"0","resultStr":"{\"title\":\"Don't Use LLMs to Make Relevance Judgments.\",\"authors\":\"Ian Soboroff\",\"doi\":\"10.54195/irrj.19625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Relevance judgments and other truth data for information retrieval (IR) evaluations are created manually. There is a strong temptation to use large language models (LLMs) as proxies for human judges. However, letting the LLM write your truth data handicaps the evaluation by setting that LLM as a ceiling on performance. There are ways to use LLMs in the relevance assessment process, but just generating relevance judgments with a prompt isn't one of them.</p>\",\"PeriodicalId\":520515,\"journal\":{\"name\":\"Information retrieval research journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11984504/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information retrieval research journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54195/irrj.19625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information retrieval research journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54195/irrj.19625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相关性判断和其他信息检索(IR)评估的真实数据是手动创建的。使用大型语言模型(llm)作为人类法官的代理是一种强烈的诱惑。然而,让LLM编写您的真实数据会阻碍评估,因为它将LLM设置为性能的上限。有很多方法可以在相关性评估过程中使用法学硕士,但仅仅通过提示生成相关性判断并不是其中之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Don't Use LLMs to Make Relevance Judgments.

Relevance judgments and other truth data for information retrieval (IR) evaluations are created manually. There is a strong temptation to use large language models (LLMs) as proxies for human judges. However, letting the LLM write your truth data handicaps the evaluation by setting that LLM as a ceiling on performance. There are ways to use LLMs in the relevance assessment process, but just generating relevance judgments with a prompt isn't one of them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信