θ图作为最小独立支配集重构图的可实现性。

IF 0.4 Q4 MATHEMATICS
Annales Mathematicae Silesianae Pub Date : 2024-02-21 eCollection Date: 2025-03-01 DOI:10.2478/amsil-2024-0002
R C Brewster, C M Mynhardt, L E Teshima
{"title":"θ图作为最小独立支配集重构图的可实现性。","authors":"R C Brewster, C M Mynhardt, L E Teshima","doi":"10.2478/amsil-2024-0002","DOIUrl":null,"url":null,"abstract":"<p><p>The independent domination number <i>i</i>(<i>G</i>) of a graph <i>G</i> is the minimum cardinality of a maximal independent set of <i>G</i>, also called an <i>i</i>(<i>G</i>)-set. The <i>i</i>-graph of <i>G</i>, denoted <i>ℐ</i> (<i>G</i>), is the graph whose vertices correspond to the <i>i</i>(<i>G</i>)-sets, and where two <i>i</i>(<i>G</i>)-sets are adjacent if and only if they differ by two adjacent vertices. Not all graphs are <i>i</i>-graph realizable, that is, given a target graph <i>H</i>, there does not necessarily exist a source graph <i>G</i> such that <i>H</i> ≅ <i>ℐ</i> (<i>G</i>). We consider a class of graphs called \"theta graphs\": a theta graph is the union of three internally disjoint nontrivial paths with the same two distinct end vertices. We characterize theta graphs that are <i>i</i>-graph realizable, showing that there are only finitely many that are not. We also characterize those line graphs and claw-free graphs that are <i>i</i>-graphs, and show that all 3-connected cubic bipartite planar graphs are <i>i</i>-graphs.</p>","PeriodicalId":52359,"journal":{"name":"Annales Mathematicae Silesianae","volume":"39 1","pages":"94-129"},"PeriodicalIF":0.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024038/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Realizability of Theta Graphs as Reconfiguration Graphs of Minimum Independent Dominating Sets.\",\"authors\":\"R C Brewster, C M Mynhardt, L E Teshima\",\"doi\":\"10.2478/amsil-2024-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The independent domination number <i>i</i>(<i>G</i>) of a graph <i>G</i> is the minimum cardinality of a maximal independent set of <i>G</i>, also called an <i>i</i>(<i>G</i>)-set. The <i>i</i>-graph of <i>G</i>, denoted <i>ℐ</i> (<i>G</i>), is the graph whose vertices correspond to the <i>i</i>(<i>G</i>)-sets, and where two <i>i</i>(<i>G</i>)-sets are adjacent if and only if they differ by two adjacent vertices. Not all graphs are <i>i</i>-graph realizable, that is, given a target graph <i>H</i>, there does not necessarily exist a source graph <i>G</i> such that <i>H</i> ≅ <i>ℐ</i> (<i>G</i>). We consider a class of graphs called \\\"theta graphs\\\": a theta graph is the union of three internally disjoint nontrivial paths with the same two distinct end vertices. We characterize theta graphs that are <i>i</i>-graph realizable, showing that there are only finitely many that are not. We also characterize those line graphs and claw-free graphs that are <i>i</i>-graphs, and show that all 3-connected cubic bipartite planar graphs are <i>i</i>-graphs.</p>\",\"PeriodicalId\":52359,\"journal\":{\"name\":\"Annales Mathematicae Silesianae\",\"volume\":\"39 1\",\"pages\":\"94-129\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12024038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Mathematicae Silesianae\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amsil-2024-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Mathematicae Silesianae","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amsil-2024-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G的独立支配数i(G)是G的最大独立集(也称为i(G)集)的最小基数。G的i-图,记作k (G),是其顶点对应于i(G)-集合的图,其中两个i(G)-集合相邻当且仅当它们相差两个相邻的顶点。并不是所有的图都是可实现i图的,也就是说,给定一个目标图H,并不一定存在一个源图G使得H = k (G)。我们考虑一类被称为“图”的图:一个图是三条内部不相交的非平凡路径的并集,它们具有相同的两个不同的端点。我们描述了可实现i图的图,表明只有有限的图不能实现i图。我们还对线形图和无爪图的i图进行了刻画,并证明了所有3连通三次二部平面图都是i图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Realizability of Theta Graphs as Reconfiguration Graphs of Minimum Independent Dominating Sets.

The Realizability of Theta Graphs as Reconfiguration Graphs of Minimum Independent Dominating Sets.

The Realizability of Theta Graphs as Reconfiguration Graphs of Minimum Independent Dominating Sets.

The Realizability of Theta Graphs as Reconfiguration Graphs of Minimum Independent Dominating Sets.

The independent domination number i(G) of a graph G is the minimum cardinality of a maximal independent set of G, also called an i(G)-set. The i-graph of G, denoted (G), is the graph whose vertices correspond to the i(G)-sets, and where two i(G)-sets are adjacent if and only if they differ by two adjacent vertices. Not all graphs are i-graph realizable, that is, given a target graph H, there does not necessarily exist a source graph G such that H (G). We consider a class of graphs called "theta graphs": a theta graph is the union of three internally disjoint nontrivial paths with the same two distinct end vertices. We characterize theta graphs that are i-graph realizable, showing that there are only finitely many that are not. We also characterize those line graphs and claw-free graphs that are i-graphs, and show that all 3-connected cubic bipartite planar graphs are i-graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Mathematicae Silesianae
Annales Mathematicae Silesianae Mathematics-Mathematics (all)
CiteScore
0.60
自引率
25.00%
发文量
17
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信