{"title":"从Andrews的多级数变换中得到一个新的q-超几何同余族。","authors":"Victor J W Guo, Michael J Schlosser","doi":"10.1007/s13398-025-01721-4","DOIUrl":null,"url":null,"abstract":"<p><p>We deduce a new family of <i>q</i>-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial from George Andrews' multi-series extension of the Watson transformation. A Karlsson-Minton type summation for very-well-poised basic hypergeometric series due to George Gasper also plays an important role in our proof. We put forward two relevant conjectures on supercongruences and <i>q</i>-supercongruences for further study.</p>","PeriodicalId":54471,"journal":{"name":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","volume":"119 2","pages":"59"},"PeriodicalIF":1.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985581/pdf/","citationCount":"0","resultStr":"{\"title\":\"A new family of <i>q</i>-hypergeometric congruences from Andrews' multi-series transformation.\",\"authors\":\"Victor J W Guo, Michael J Schlosser\",\"doi\":\"10.1007/s13398-025-01721-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We deduce a new family of <i>q</i>-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial from George Andrews' multi-series extension of the Watson transformation. A Karlsson-Minton type summation for very-well-poised basic hypergeometric series due to George Gasper also plays an important role in our proof. We put forward two relevant conjectures on supercongruences and <i>q</i>-supercongruences for further study.</p>\",\"PeriodicalId\":54471,\"journal\":{\"name\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"volume\":\"119 2\",\"pages\":\"59\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985581/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13398-025-01721-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-025-01721-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
A new family of q-hypergeometric congruences from Andrews' multi-series transformation.
We deduce a new family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial from George Andrews' multi-series extension of the Watson transformation. A Karlsson-Minton type summation for very-well-poised basic hypergeometric series due to George Gasper also plays an important role in our proof. We put forward two relevant conjectures on supercongruences and q-supercongruences for further study.
期刊介绍:
The journal publishes, in English language only, high-quality Research Articles covering Algebra; Applied Mathematics; Computational Sciences; Geometry and Topology; Mathematical Analysis; Statistics and Operations Research. Also featured are Survey Articles in every mathematical field.