固体和多孔Ti-6Al-4V合金植入股骨的应变屏蔽效应有限元分析

Q3 Engineering
Sita Ram Modi, Amardeep Dongare, Kailash Jha
{"title":"固体和多孔Ti-6Al-4V合金植入股骨的应变屏蔽效应有限元分析","authors":"Sita Ram Modi, Amardeep Dongare, Kailash Jha","doi":"10.1080/03091902.2025.2498748","DOIUrl":null,"url":null,"abstract":"<p><p>In the proposed work, strain shielding effect analysis of solid and porous Ti-6Al-4V alloy implanted femur bone using finite element analysis is carried out. Strain shielding is a significant concern during total hip arthroplasty (THA) since it reduces bone growth and results in aseptic implant loosening due to the mismatch of femur and implant characteristics. The study examined solid and porous implanted femur bone under three loading conditions: standing, walking and stair climbing. The results show that strains on bone due to porous implants as compared to solid implants have been increased by 31, 24.3% and reduced by 12.18% for standing, walking, and stair climbing human activities, respectively. The findings show that porous implants promote bone growth and reduce aseptic implant loosening by lowering the strain and stress shielding effect.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strain shielding effect analysis of solid and porous Ti-6Al-4V alloy implanted femur bone using finite element analysis.\",\"authors\":\"Sita Ram Modi, Amardeep Dongare, Kailash Jha\",\"doi\":\"10.1080/03091902.2025.2498748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the proposed work, strain shielding effect analysis of solid and porous Ti-6Al-4V alloy implanted femur bone using finite element analysis is carried out. Strain shielding is a significant concern during total hip arthroplasty (THA) since it reduces bone growth and results in aseptic implant loosening due to the mismatch of femur and implant characteristics. The study examined solid and porous implanted femur bone under three loading conditions: standing, walking and stair climbing. The results show that strains on bone due to porous implants as compared to solid implants have been increased by 31, 24.3% and reduced by 12.18% for standing, walking, and stair climbing human activities, respectively. The findings show that porous implants promote bone growth and reduce aseptic implant loosening by lowering the strain and stress shielding effect.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2025.2498748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2498748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文采用有限元方法对固体和多孔Ti-6Al-4V合金植入股骨的应变屏蔽效应进行了分析。在全髋关节置换术(THA)中,应变屏蔽是一个重要的问题,因为它会减少骨生长,并且由于股骨和假体特性的不匹配导致无菌假体松动。该研究在站立、行走和爬楼梯三种加载条件下检查了固体和多孔植入股骨。结果表明,与固体种植体相比,多孔种植体在站立、行走和爬楼梯等人体活动中对骨的应变分别增加了31.3%、24.3%和12.18%。结果表明,多孔种植体通过降低应变和应力屏蔽效应,促进骨生长,减少无菌种植体松动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strain shielding effect analysis of solid and porous Ti-6Al-4V alloy implanted femur bone using finite element analysis.

In the proposed work, strain shielding effect analysis of solid and porous Ti-6Al-4V alloy implanted femur bone using finite element analysis is carried out. Strain shielding is a significant concern during total hip arthroplasty (THA) since it reduces bone growth and results in aseptic implant loosening due to the mismatch of femur and implant characteristics. The study examined solid and porous implanted femur bone under three loading conditions: standing, walking and stair climbing. The results show that strains on bone due to porous implants as compared to solid implants have been increased by 31, 24.3% and reduced by 12.18% for standing, walking, and stair climbing human activities, respectively. The findings show that porous implants promote bone growth and reduce aseptic implant loosening by lowering the strain and stress shielding effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Engineering and Technology
Journal of Medical Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.60
自引率
0.00%
发文量
77
期刊介绍: The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信