{"title":"基于改进分割模型的深度集成体系结构阿尔茨海默病检测。","authors":"Shilpa Jaykumar Kale, Pramod U Chavan","doi":"10.1080/03091902.2025.2484691","DOIUrl":null,"url":null,"abstract":"<p><p>The most common cause of dementia, which includes significant cognitive impairment that interferes with day-to-day activities, is Alzheimer's Disease (AD). Deep learning techniques performed better on diagnostic tasks. However, current methods for detecting Alzheimer's disease lack effectiveness, resulting in inaccurate results. To overcome these challenges, a novel deep ensemble architecture for AD classification is proposed in this research. The proposed model involves key phases, including Preprocessing, Segmentation, Feature Extraction, and Classification. Initially, Median filtering is employed for preprocessing. Subsequently, an improved U-Net architecture is employed for segmentation, and then the features including Improved Shape Index Histogram (ISIH), Multi Binary Pattern (MBP), and Multi Texton are extracted from the segmented image. Then, an En-LeCILSTM is proposed, which combines the LeNet, CNN and improved LSTM models. Finally, the resultant output is obtained by averaging the intermediate output of each model, leading to improved detection accuracy. Finally, the proposed model's efficiency is assessed through various analyses, including classifier comparison, and performance metric evaluation. As a result, the En-LeCILSTM model scored a higher accuracy of 0.963 and an F-measure of 0.908, which surpasses the result of traditional methods. The outcomes demonstrate that the proposed model is notably more effective in detecting Alzheimer's disease.</p>","PeriodicalId":39637,"journal":{"name":"Journal of Medical Engineering and Technology","volume":" ","pages":"1-25"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep ensemble architecture with improved segmentation model for Alzheimer's disease detection.\",\"authors\":\"Shilpa Jaykumar Kale, Pramod U Chavan\",\"doi\":\"10.1080/03091902.2025.2484691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The most common cause of dementia, which includes significant cognitive impairment that interferes with day-to-day activities, is Alzheimer's Disease (AD). Deep learning techniques performed better on diagnostic tasks. However, current methods for detecting Alzheimer's disease lack effectiveness, resulting in inaccurate results. To overcome these challenges, a novel deep ensemble architecture for AD classification is proposed in this research. The proposed model involves key phases, including Preprocessing, Segmentation, Feature Extraction, and Classification. Initially, Median filtering is employed for preprocessing. Subsequently, an improved U-Net architecture is employed for segmentation, and then the features including Improved Shape Index Histogram (ISIH), Multi Binary Pattern (MBP), and Multi Texton are extracted from the segmented image. Then, an En-LeCILSTM is proposed, which combines the LeNet, CNN and improved LSTM models. Finally, the resultant output is obtained by averaging the intermediate output of each model, leading to improved detection accuracy. Finally, the proposed model's efficiency is assessed through various analyses, including classifier comparison, and performance metric evaluation. As a result, the En-LeCILSTM model scored a higher accuracy of 0.963 and an F-measure of 0.908, which surpasses the result of traditional methods. The outcomes demonstrate that the proposed model is notably more effective in detecting Alzheimer's disease.</p>\",\"PeriodicalId\":39637,\"journal\":{\"name\":\"Journal of Medical Engineering and Technology\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/03091902.2025.2484691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/03091902.2025.2484691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Deep ensemble architecture with improved segmentation model for Alzheimer's disease detection.
The most common cause of dementia, which includes significant cognitive impairment that interferes with day-to-day activities, is Alzheimer's Disease (AD). Deep learning techniques performed better on diagnostic tasks. However, current methods for detecting Alzheimer's disease lack effectiveness, resulting in inaccurate results. To overcome these challenges, a novel deep ensemble architecture for AD classification is proposed in this research. The proposed model involves key phases, including Preprocessing, Segmentation, Feature Extraction, and Classification. Initially, Median filtering is employed for preprocessing. Subsequently, an improved U-Net architecture is employed for segmentation, and then the features including Improved Shape Index Histogram (ISIH), Multi Binary Pattern (MBP), and Multi Texton are extracted from the segmented image. Then, an En-LeCILSTM is proposed, which combines the LeNet, CNN and improved LSTM models. Finally, the resultant output is obtained by averaging the intermediate output of each model, leading to improved detection accuracy. Finally, the proposed model's efficiency is assessed through various analyses, including classifier comparison, and performance metric evaluation. As a result, the En-LeCILSTM model scored a higher accuracy of 0.963 and an F-measure of 0.908, which surpasses the result of traditional methods. The outcomes demonstrate that the proposed model is notably more effective in detecting Alzheimer's disease.
期刊介绍:
The Journal of Medical Engineering & Technology is an international, independent, multidisciplinary, bimonthly journal promoting an understanding of the physiological processes underlying disease processes and the appropriate application of technology. Features include authoritative review papers, the reporting of original research, and evaluation reports on new and existing techniques and devices. Each issue of the journal contains a comprehensive information service which provides news relevant to the world of medical technology, details of new products, book reviews, and selected contents of related journals.