集成医疗实体标签语义的医学文本分类模型。

Q4 Medicine
Li Wei, Dechun Zhao, Lu Qin, Yanghuazi Liu, Yuchen Shen, Changrong Ye
{"title":"集成医疗实体标签语义的医学文本分类模型。","authors":"Li Wei, Dechun Zhao, Lu Qin, Yanghuazi Liu, Yuchen Shen, Changrong Ye","doi":"10.7507/1001-5515.202408001","DOIUrl":null,"url":null,"abstract":"<p><p>Automatic classification of medical questions is of great significance in improving the quality and efficiency of online medical services, and belongs to the task of intent recognition. Joint entity recognition and intent recognition perform better than single task models. Currently, most publicly available medical text intent recognition datasets lack entity annotation, and manual annotation of these entities requires a lot of time and manpower. To solve this problem, this paper proposes a medical text classification model, bidirectional encoder representation based on transformer-recurrent convolutional neural network-entity-label-semantics (BRELS), which integrates medical entity label semantics. This model firstly utilizes an adaptive fusion mechanism to absorb prior knowledge of medical entity labels, achieving local feature enhancement. Then in global feature extraction, a lightweight recurrent convolutional neural network (LRCNN) is used to suppress parameter growth while preserving the original semantics of the text. The ablation and comparison experiments are conducted on three public medical text intent recognition datasets to validate the performance of the model. The results show that F1 score reaches 87.34%, 81.71%, and 77.74% on each dataset, respectively. The results show that the BRELS model can effectively identify and understand medical terminology, thereby effectively identifying users' intentions, which can improve the quality and efficiency of online medical services.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 2","pages":"326-333"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035632/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Medical text classification model integrating medical entity label semantics].\",\"authors\":\"Li Wei, Dechun Zhao, Lu Qin, Yanghuazi Liu, Yuchen Shen, Changrong Ye\",\"doi\":\"10.7507/1001-5515.202408001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automatic classification of medical questions is of great significance in improving the quality and efficiency of online medical services, and belongs to the task of intent recognition. Joint entity recognition and intent recognition perform better than single task models. Currently, most publicly available medical text intent recognition datasets lack entity annotation, and manual annotation of these entities requires a lot of time and manpower. To solve this problem, this paper proposes a medical text classification model, bidirectional encoder representation based on transformer-recurrent convolutional neural network-entity-label-semantics (BRELS), which integrates medical entity label semantics. This model firstly utilizes an adaptive fusion mechanism to absorb prior knowledge of medical entity labels, achieving local feature enhancement. Then in global feature extraction, a lightweight recurrent convolutional neural network (LRCNN) is used to suppress parameter growth while preserving the original semantics of the text. The ablation and comparison experiments are conducted on three public medical text intent recognition datasets to validate the performance of the model. The results show that F1 score reaches 87.34%, 81.71%, and 77.74% on each dataset, respectively. The results show that the BRELS model can effectively identify and understand medical terminology, thereby effectively identifying users' intentions, which can improve the quality and efficiency of online medical services.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"42 2\",\"pages\":\"326-333\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202408001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202408001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

医学问题自动分类对提高在线医疗服务的质量和效率具有重要意义,属于意图识别的任务。联合实体识别和意图识别优于单任务模型。目前,大多数公开的医学文本意图识别数据集缺乏实体标注,手工标注这些实体需要耗费大量的时间和人力。为了解决这一问题,本文提出了一种医学文本分类模型——基于变换-循环卷积神经网络-实体-标签-语义(BRELS)的双向编码器表示,该模型集成了医学实体标签语义。该模型首先利用自适应融合机制吸收医疗实体标签的先验知识,实现局部特征增强。然后在全局特征提取中,使用轻量级递归卷积神经网络(LRCNN)抑制参数增长,同时保留文本的原始语义。在三个公共医学文本意图识别数据集上进行消融和对比实验,验证模型的性能。结果表明,在每个数据集上F1得分分别达到87.34%、81.71%和77.74%。结果表明,BRELS模型可以有效识别和理解医学术语,从而有效识别用户意图,提高在线医疗服务的质量和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Medical text classification model integrating medical entity label semantics].

Automatic classification of medical questions is of great significance in improving the quality and efficiency of online medical services, and belongs to the task of intent recognition. Joint entity recognition and intent recognition perform better than single task models. Currently, most publicly available medical text intent recognition datasets lack entity annotation, and manual annotation of these entities requires a lot of time and manpower. To solve this problem, this paper proposes a medical text classification model, bidirectional encoder representation based on transformer-recurrent convolutional neural network-entity-label-semantics (BRELS), which integrates medical entity label semantics. This model firstly utilizes an adaptive fusion mechanism to absorb prior knowledge of medical entity labels, achieving local feature enhancement. Then in global feature extraction, a lightweight recurrent convolutional neural network (LRCNN) is used to suppress parameter growth while preserving the original semantics of the text. The ablation and comparison experiments are conducted on three public medical text intent recognition datasets to validate the performance of the model. The results show that F1 score reaches 87.34%, 81.71%, and 77.74% on each dataset, respectively. The results show that the BRELS model can effectively identify and understand medical terminology, thereby effectively identifying users' intentions, which can improve the quality and efficiency of online medical services.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信