Eclipse:一个Python包,用于对齐两个或多个非靶向LC-MS代谢组学数据集。

Daniel S Hitchcock, Jesse N Krejci, Chloe E Sturgeon, Courtney A Dennis, Sarah T Jeanfavre, Julian R Avila-Pacheco, Clary B Clish
{"title":"Eclipse:一个Python包,用于对齐两个或多个非靶向LC-MS代谢组学数据集。","authors":"Daniel S Hitchcock, Jesse N Krejci, Chloe E Sturgeon, Courtney A Dennis, Sarah T Jeanfavre, Julian R Avila-Pacheco, Clary B Clish","doi":"10.1093/bioinformatics/btaf290","DOIUrl":null,"url":null,"abstract":"<p><p>Nontargeted LC-MS metabolomics datasets contain a wealth of information but present many challenges during analysis and processing. Often, two or more independently processed datasets must be aligned to form a complete dataset, but existing software does not fully meet our needs. For this, we have created an open-source Python package called Eclipse. Eclipse uses a novel graph-based approach to handle complex matching scenarios that arise from n > 2 datasets.</p><p><strong>Availability and implementation: </strong>Eclipse is open source (https://github.com/broadinstitute/bmxp) and can be installed via \"pip install bmxp\".</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eclipse: A Python package for alignment of two or more nontargeted LC-MS metabolomics datasets.\",\"authors\":\"Daniel S Hitchcock, Jesse N Krejci, Chloe E Sturgeon, Courtney A Dennis, Sarah T Jeanfavre, Julian R Avila-Pacheco, Clary B Clish\",\"doi\":\"10.1093/bioinformatics/btaf290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nontargeted LC-MS metabolomics datasets contain a wealth of information but present many challenges during analysis and processing. Often, two or more independently processed datasets must be aligned to form a complete dataset, but existing software does not fully meet our needs. For this, we have created an open-source Python package called Eclipse. Eclipse uses a novel graph-based approach to handle complex matching scenarios that arise from n > 2 datasets.</p><p><strong>Availability and implementation: </strong>Eclipse is open source (https://github.com/broadinstitute/bmxp) and can be installed via \\\"pip install bmxp\\\".</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

非靶向LC-MS代谢组学数据集包含丰富的信息,但在分析和处理过程中存在许多挑战。通常,两个或多个独立处理的数据集必须对齐才能形成完整的数据集,但现有的软件并不能完全满足我们的需求。为此,我们创建了一个名为Eclipse的开源Python包。Eclipse使用一种新颖的基于图的方法来处理来自bbbb2数据集的复杂匹配场景。可用性和实现:Eclipse是开源的(https://github.com/broadinstitute/bmxp),可以通过“pip install bmxp”进行安装。补充信息:补充数据可在生物信息学在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eclipse: A Python package for alignment of two or more nontargeted LC-MS metabolomics datasets.

Nontargeted LC-MS metabolomics datasets contain a wealth of information but present many challenges during analysis and processing. Often, two or more independently processed datasets must be aligned to form a complete dataset, but existing software does not fully meet our needs. For this, we have created an open-source Python package called Eclipse. Eclipse uses a novel graph-based approach to handle complex matching scenarios that arise from n > 2 datasets.

Availability and implementation: Eclipse is open source (https://github.com/broadinstitute/bmxp) and can be installed via "pip install bmxp".

Supplementary information: Supplementary data are available at Bioinformatics online.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信