Sarah C Lotspeich, Ashley E Mullan, Lucy D'Agostino McGowan, Staci A Hepler
{"title":"结合直线和基于地图的距离来研究接近健康食品与疾病之间的联系。","authors":"Sarah C Lotspeich, Ashley E Mullan, Lucy D'Agostino McGowan, Staci A Hepler","doi":"10.1002/sim.70054","DOIUrl":null,"url":null,"abstract":"<p><p>Healthy foods are essential for a healthy life, but accessing healthy food can be more challenging for some people than others. This disparity in food access may lead to disparities in well-being, potentially with disproportionate rates of diseases in communities that face more challenges in accessing healthy food (i.e., low-access communities). Identifying low-access, high-risk communities for targeted interventions is a public health priority, but current methods to quantify food access rely on distance measures that are either computationally simple (like the length of the shortest straight-line route) or accurate (like the length of the shortest map-based driving route), but not both. We propose a multiple imputation approach to combine these distance measures, allowing researchers to harness the computational ease of one with the accuracy of the other. The approach incorporates straight-line distances for all neighborhoods and map-based distances for just a subset, offering comparable estimates to the \"gold standard\" model using map-based distances for all neighborhoods and improved efficiency over the \"complete case\" model using map-based distances for just the subset. Through the adoption of a measurement error framework, information from the straight-line distances can be leveraged to compute informative placeholders (i.e., impute) for any neighborhoods without map-based distances. Using simulations and data for the Piedmont Triad region of North Carolina, we quantify and compare the associations between two health outcomes (diabetes and obesity) and neighborhood-level access to healthy foods. The imputation procedure also makes it possible to predict the full landscape of food access in an area without requiring map-based measurements for all neighborhoods.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":"44 7","pages":"e70054"},"PeriodicalIF":1.8000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995689/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining Straight-Line and Map-Based Distances to Investigate the Connection Between Proximity to Healthy Foods and Disease.\",\"authors\":\"Sarah C Lotspeich, Ashley E Mullan, Lucy D'Agostino McGowan, Staci A Hepler\",\"doi\":\"10.1002/sim.70054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Healthy foods are essential for a healthy life, but accessing healthy food can be more challenging for some people than others. This disparity in food access may lead to disparities in well-being, potentially with disproportionate rates of diseases in communities that face more challenges in accessing healthy food (i.e., low-access communities). Identifying low-access, high-risk communities for targeted interventions is a public health priority, but current methods to quantify food access rely on distance measures that are either computationally simple (like the length of the shortest straight-line route) or accurate (like the length of the shortest map-based driving route), but not both. We propose a multiple imputation approach to combine these distance measures, allowing researchers to harness the computational ease of one with the accuracy of the other. The approach incorporates straight-line distances for all neighborhoods and map-based distances for just a subset, offering comparable estimates to the \\\"gold standard\\\" model using map-based distances for all neighborhoods and improved efficiency over the \\\"complete case\\\" model using map-based distances for just the subset. Through the adoption of a measurement error framework, information from the straight-line distances can be leveraged to compute informative placeholders (i.e., impute) for any neighborhoods without map-based distances. Using simulations and data for the Piedmont Triad region of North Carolina, we quantify and compare the associations between two health outcomes (diabetes and obesity) and neighborhood-level access to healthy foods. The imputation procedure also makes it possible to predict the full landscape of food access in an area without requiring map-based measurements for all neighborhoods.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\"44 7\",\"pages\":\"e70054\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11995689/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.70054\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.70054","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Combining Straight-Line and Map-Based Distances to Investigate the Connection Between Proximity to Healthy Foods and Disease.
Healthy foods are essential for a healthy life, but accessing healthy food can be more challenging for some people than others. This disparity in food access may lead to disparities in well-being, potentially with disproportionate rates of diseases in communities that face more challenges in accessing healthy food (i.e., low-access communities). Identifying low-access, high-risk communities for targeted interventions is a public health priority, but current methods to quantify food access rely on distance measures that are either computationally simple (like the length of the shortest straight-line route) or accurate (like the length of the shortest map-based driving route), but not both. We propose a multiple imputation approach to combine these distance measures, allowing researchers to harness the computational ease of one with the accuracy of the other. The approach incorporates straight-line distances for all neighborhoods and map-based distances for just a subset, offering comparable estimates to the "gold standard" model using map-based distances for all neighborhoods and improved efficiency over the "complete case" model using map-based distances for just the subset. Through the adoption of a measurement error framework, information from the straight-line distances can be leveraged to compute informative placeholders (i.e., impute) for any neighborhoods without map-based distances. Using simulations and data for the Piedmont Triad region of North Carolina, we quantify and compare the associations between two health outcomes (diabetes and obesity) and neighborhood-level access to healthy foods. The imputation procedure also makes it possible to predict the full landscape of food access in an area without requiring map-based measurements for all neighborhoods.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.