高斯函数模型在医学影像任务特定评估:理论研究。

Sho Maruyama
{"title":"高斯函数模型在医学影像任务特定评估:理论研究。","authors":"Sho Maruyama","doi":"10.1007/s10278-025-01511-9","DOIUrl":null,"url":null,"abstract":"<p><p>In medical image diagnosis, understanding image characteristics is crucial for selecting and optimizing imaging systems and advancing their development. Objective image quality assessments, based on specific diagnostic tasks, have become a standard in medical image analysis, bridging the gap between experimental observations and clinical applications. However, conventional task-based assessments often rely on ideal observer models that assume target signals have circular shapes with well-defined edges. This simplification rarely reflects the true complexity of lesion morphology, where edges exhibit variability. This study proposes a more practical approach by employing a Gaussian distribution to represent target signal shapes. This study explicitly derives the task function for Gaussian signals and evaluates the detectability index through simulations based on head computed tomography (CT) images with low-contrast lesions. Detectability indices were calculated for both circular and Gaussian signals using non-prewhitening and Hotelling observer models. The results demonstrate that Gaussian signals consistently exhibit lower detectability indices compared to circular signals, with differences becoming more pronounced for larger signal sizes. Simulated images closely resembling actual CT images confirm the validity of these calculations. These findings quantitatively clarify the influence of signal shape on detection performance, highlighting the limitations of conventional circular models. Thus, it provides a theoretical framework for task-based assessments in medical imaging, offering improved accuracy and clinical relevance for future advancements in the field.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Function Model for Task-Specific Evaluation in Medical Imaging: A Theoretical Investigation.\",\"authors\":\"Sho Maruyama\",\"doi\":\"10.1007/s10278-025-01511-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In medical image diagnosis, understanding image characteristics is crucial for selecting and optimizing imaging systems and advancing their development. Objective image quality assessments, based on specific diagnostic tasks, have become a standard in medical image analysis, bridging the gap between experimental observations and clinical applications. However, conventional task-based assessments often rely on ideal observer models that assume target signals have circular shapes with well-defined edges. This simplification rarely reflects the true complexity of lesion morphology, where edges exhibit variability. This study proposes a more practical approach by employing a Gaussian distribution to represent target signal shapes. This study explicitly derives the task function for Gaussian signals and evaluates the detectability index through simulations based on head computed tomography (CT) images with low-contrast lesions. Detectability indices were calculated for both circular and Gaussian signals using non-prewhitening and Hotelling observer models. The results demonstrate that Gaussian signals consistently exhibit lower detectability indices compared to circular signals, with differences becoming more pronounced for larger signal sizes. Simulated images closely resembling actual CT images confirm the validity of these calculations. These findings quantitatively clarify the influence of signal shape on detection performance, highlighting the limitations of conventional circular models. Thus, it provides a theoretical framework for task-based assessments in medical imaging, offering improved accuracy and clinical relevance for future advancements in the field.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01511-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01511-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医学影像诊断中,了解影像特征对于选择和优化影像系统、推进影像系统的发展至关重要。基于特定诊断任务的客观图像质量评估已成为医学图像分析的标准,弥合了实验观察与临床应用之间的差距。然而,传统的基于任务的评估通常依赖于理想的观察者模型,该模型假设目标信号具有具有明确边缘的圆形。这种简化很少反映病变形态的真正复杂性,其中边缘表现出可变性。本研究提出了一种更实用的方法,即采用高斯分布来表示目标信号的形状。本研究明确推导了高斯信号的任务函数,并通过模拟低对比度病变的头部计算机断层扫描(CT)图像来评估可检测性指数。利用非预白化和Hotelling观测器模型计算了圆形和高斯信号的可探测性指数。结果表明,与圆形信号相比,高斯信号始终表现出较低的可检测性指数,当信号尺寸较大时,差异变得更加明显。模拟图像与实际CT图像非常相似,证实了这些计算的有效性。这些发现定量地阐明了信号形状对检测性能的影响,突出了传统圆形模型的局限性。因此,它为基于任务的医学成像评估提供了一个理论框架,为该领域的未来发展提供了更高的准确性和临床相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Function Model for Task-Specific Evaluation in Medical Imaging: A Theoretical Investigation.

In medical image diagnosis, understanding image characteristics is crucial for selecting and optimizing imaging systems and advancing their development. Objective image quality assessments, based on specific diagnostic tasks, have become a standard in medical image analysis, bridging the gap between experimental observations and clinical applications. However, conventional task-based assessments often rely on ideal observer models that assume target signals have circular shapes with well-defined edges. This simplification rarely reflects the true complexity of lesion morphology, where edges exhibit variability. This study proposes a more practical approach by employing a Gaussian distribution to represent target signal shapes. This study explicitly derives the task function for Gaussian signals and evaluates the detectability index through simulations based on head computed tomography (CT) images with low-contrast lesions. Detectability indices were calculated for both circular and Gaussian signals using non-prewhitening and Hotelling observer models. The results demonstrate that Gaussian signals consistently exhibit lower detectability indices compared to circular signals, with differences becoming more pronounced for larger signal sizes. Simulated images closely resembling actual CT images confirm the validity of these calculations. These findings quantitatively clarify the influence of signal shape on detection performance, highlighting the limitations of conventional circular models. Thus, it provides a theoretical framework for task-based assessments in medical imaging, offering improved accuracy and clinical relevance for future advancements in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信