Junxi Hu, Qingwen Liu, Wenbo He, Jun Wu, Dong Zhang, Chao Sun, Shichun Lu, Xiaolin Wang, Yusheng Shu
{"title":"预测食管癌术后吻合口狭窄的自动机器学习模型:一项回顾性队列研究。","authors":"Junxi Hu, Qingwen Liu, Wenbo He, Jun Wu, Dong Zhang, Chao Sun, Shichun Lu, Xiaolin Wang, Yusheng Shu","doi":"10.1007/s00464-025-11759-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Anastomotic strictures (AS) frequently occurs in patients following esophageal cancer surgery, significantly affecting their long-term quality of life. This study aims to develop a machine learning model to predict high-risk AS, enabling early intervention and precise management.</p><p><strong>Methods: </strong>A total of 1549 patients underwent radical esophageal cancer surgery and were split into a training set (1084) and a validation set (465). Adaptive Synthetic Sampling (ADASYN) handled class imbalance, while Boruta and Least Absolute Shrinkage and Selection Operator (LASSO) with cross-validation refined key features. High-correlation features (r > 0.8) were assessed using variance inflation factors (VIFs) and clinical relevance. Machine learning models were trained and evaluated using area under curve (AUC), accuracy, sensitivity, specificity, calibration curves, and decision curve analysis (DCA). Shapley Additive exPlanations (SHAP) analysis improved model interpretability.</p><p><strong>Results: </strong>Seven critical variables were finalized, including anastomotic leakage (AL), neoadjuvant therapy (NCRT), suture method (SM), endoscopic assistance (EA), white blood cell count (WBC), albumin (Alb), and Suture site (SS). The Gradient Boosting Machine (GBM) model achieved the highest AUC, with 0.886 in the training set and 0.872 in the validation set. Shapley Additive Explanations (SHAP) analysis indicated that AL, SM, and NCRT were the most significant variables for model predictions.</p><p><strong>Conclusion: </strong>The GBM machine learning model constructed in this study can effectively identify high-risk patients for AS following esophageal cancer surgery, offering strong support for earlier postoperative detection and precise clinical management.</p>","PeriodicalId":22174,"journal":{"name":"Surgical Endoscopy And Other Interventional Techniques","volume":" ","pages":"3737-3748"},"PeriodicalIF":2.4000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated machine learning model for predicting anastomotic strictures after esophageal cancer surgery: a retrospective cohort study.\",\"authors\":\"Junxi Hu, Qingwen Liu, Wenbo He, Jun Wu, Dong Zhang, Chao Sun, Shichun Lu, Xiaolin Wang, Yusheng Shu\",\"doi\":\"10.1007/s00464-025-11759-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Anastomotic strictures (AS) frequently occurs in patients following esophageal cancer surgery, significantly affecting their long-term quality of life. This study aims to develop a machine learning model to predict high-risk AS, enabling early intervention and precise management.</p><p><strong>Methods: </strong>A total of 1549 patients underwent radical esophageal cancer surgery and were split into a training set (1084) and a validation set (465). Adaptive Synthetic Sampling (ADASYN) handled class imbalance, while Boruta and Least Absolute Shrinkage and Selection Operator (LASSO) with cross-validation refined key features. High-correlation features (r > 0.8) were assessed using variance inflation factors (VIFs) and clinical relevance. Machine learning models were trained and evaluated using area under curve (AUC), accuracy, sensitivity, specificity, calibration curves, and decision curve analysis (DCA). Shapley Additive exPlanations (SHAP) analysis improved model interpretability.</p><p><strong>Results: </strong>Seven critical variables were finalized, including anastomotic leakage (AL), neoadjuvant therapy (NCRT), suture method (SM), endoscopic assistance (EA), white blood cell count (WBC), albumin (Alb), and Suture site (SS). The Gradient Boosting Machine (GBM) model achieved the highest AUC, with 0.886 in the training set and 0.872 in the validation set. Shapley Additive Explanations (SHAP) analysis indicated that AL, SM, and NCRT were the most significant variables for model predictions.</p><p><strong>Conclusion: </strong>The GBM machine learning model constructed in this study can effectively identify high-risk patients for AS following esophageal cancer surgery, offering strong support for earlier postoperative detection and precise clinical management.</p>\",\"PeriodicalId\":22174,\"journal\":{\"name\":\"Surgical Endoscopy And Other Interventional Techniques\",\"volume\":\" \",\"pages\":\"3737-3748\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surgical Endoscopy And Other Interventional Techniques\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00464-025-11759-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surgical Endoscopy And Other Interventional Techniques","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00464-025-11759-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
Automated machine learning model for predicting anastomotic strictures after esophageal cancer surgery: a retrospective cohort study.
Background: Anastomotic strictures (AS) frequently occurs in patients following esophageal cancer surgery, significantly affecting their long-term quality of life. This study aims to develop a machine learning model to predict high-risk AS, enabling early intervention and precise management.
Methods: A total of 1549 patients underwent radical esophageal cancer surgery and were split into a training set (1084) and a validation set (465). Adaptive Synthetic Sampling (ADASYN) handled class imbalance, while Boruta and Least Absolute Shrinkage and Selection Operator (LASSO) with cross-validation refined key features. High-correlation features (r > 0.8) were assessed using variance inflation factors (VIFs) and clinical relevance. Machine learning models were trained and evaluated using area under curve (AUC), accuracy, sensitivity, specificity, calibration curves, and decision curve analysis (DCA). Shapley Additive exPlanations (SHAP) analysis improved model interpretability.
Results: Seven critical variables were finalized, including anastomotic leakage (AL), neoadjuvant therapy (NCRT), suture method (SM), endoscopic assistance (EA), white blood cell count (WBC), albumin (Alb), and Suture site (SS). The Gradient Boosting Machine (GBM) model achieved the highest AUC, with 0.886 in the training set and 0.872 in the validation set. Shapley Additive Explanations (SHAP) analysis indicated that AL, SM, and NCRT were the most significant variables for model predictions.
Conclusion: The GBM machine learning model constructed in this study can effectively identify high-risk patients for AS following esophageal cancer surgery, offering strong support for earlier postoperative detection and precise clinical management.
期刊介绍:
Uniquely positioned at the interface between various medical and surgical disciplines, Surgical Endoscopy serves as a focal point for the international surgical community to exchange information on practice, theory, and research.
Topics covered in the journal include:
-Surgical aspects of:
Interventional endoscopy,
Ultrasound,
Other techniques in the fields of gastroenterology, obstetrics, gynecology, and urology,
-Gastroenterologic surgery
-Thoracic surgery
-Traumatic surgery
-Orthopedic surgery
-Pediatric surgery