{"title":"对m6A-seq数据的综合分析揭示了哺乳动物中保守和独特的m6A位点的明显特征。","authors":"Guo-Shi Chai, Hong-Xuan Chen, Dong-Zhao Ma, Ze-Hui Ren, Xue-Hong Liu, Zhang Zhang, Guan-Zheng Luo","doi":"10.1261/rna.080222.124","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenine (m6A) stands out as the most prevalent internal chemical modification on mammalian mRNA, playing a vital role in diverse biological processes. However, the characteristics of m6A across different cell lines and tissues remain poorly understood. In this study, we systematically evaluated 193 published m6A-seq data sets using newly established quality metrics, identifying ∼1.5 million high-confidence m6A sites in human and mouse. By categorizing m6A sites into different consistency levels, we observed that high-consistency m6A sites were enriched near mRNA stop codons and lncRNA 5' ends, exhibited stronger interactions with canonical m6A-binding proteins, and contributed to mRNA/lncRNA expression homeostasis. Furthermore, the promoters of genes marked by these consistent sites exhibited higher CpG density, with METTL3 preferentially binding to these regions. Conversely, low-consistency or unique m6A sites were enriched near mRNA start codons and distributed evenly across lncRNA, interacting with newly discovered m6A-binding proteins. These findings enhance our understanding of the diverse characteristics and potential functional roles of m6A in mammals.</p>","PeriodicalId":21401,"journal":{"name":"RNA","volume":" ","pages":"1013-1027"},"PeriodicalIF":5.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170192/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive analysis of m6A-seq data reveals distinct features of conserved and unique m6A sites in mammals.\",\"authors\":\"Guo-Shi Chai, Hong-Xuan Chen, Dong-Zhao Ma, Ze-Hui Ren, Xue-Hong Liu, Zhang Zhang, Guan-Zheng Luo\",\"doi\":\"10.1261/rna.080222.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N6-methyladenine (m6A) stands out as the most prevalent internal chemical modification on mammalian mRNA, playing a vital role in diverse biological processes. However, the characteristics of m6A across different cell lines and tissues remain poorly understood. In this study, we systematically evaluated 193 published m6A-seq data sets using newly established quality metrics, identifying ∼1.5 million high-confidence m6A sites in human and mouse. By categorizing m6A sites into different consistency levels, we observed that high-consistency m6A sites were enriched near mRNA stop codons and lncRNA 5' ends, exhibited stronger interactions with canonical m6A-binding proteins, and contributed to mRNA/lncRNA expression homeostasis. Furthermore, the promoters of genes marked by these consistent sites exhibited higher CpG density, with METTL3 preferentially binding to these regions. Conversely, low-consistency or unique m6A sites were enriched near mRNA start codons and distributed evenly across lncRNA, interacting with newly discovered m6A-binding proteins. These findings enhance our understanding of the diverse characteristics and potential functional roles of m6A in mammals.</p>\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\" \",\"pages\":\"1013-1027\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12170192/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080222.124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080222.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Comprehensive analysis of m6A-seq data reveals distinct features of conserved and unique m6A sites in mammals.
N6-methyladenine (m6A) stands out as the most prevalent internal chemical modification on mammalian mRNA, playing a vital role in diverse biological processes. However, the characteristics of m6A across different cell lines and tissues remain poorly understood. In this study, we systematically evaluated 193 published m6A-seq data sets using newly established quality metrics, identifying ∼1.5 million high-confidence m6A sites in human and mouse. By categorizing m6A sites into different consistency levels, we observed that high-consistency m6A sites were enriched near mRNA stop codons and lncRNA 5' ends, exhibited stronger interactions with canonical m6A-binding proteins, and contributed to mRNA/lncRNA expression homeostasis. Furthermore, the promoters of genes marked by these consistent sites exhibited higher CpG density, with METTL3 preferentially binding to these regions. Conversely, low-consistency or unique m6A sites were enriched near mRNA start codons and distributed evenly across lncRNA, interacting with newly discovered m6A-binding proteins. These findings enhance our understanding of the diverse characteristics and potential functional roles of m6A in mammals.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.