利用BRAD自动发现和富集生物标志物。

Joshua Pickard, Ram Prakash, Marc Andrew Choi, Natalie Oliven, Cooper Stansbury, Jillian Cwycyshyn, Nicholas Galioto, Alex Gorodetsky, Alvaro Velasquez, Indika Rajapakse
{"title":"利用BRAD自动发现和富集生物标志物。","authors":"Joshua Pickard, Ram Prakash, Marc Andrew Choi, Natalie Oliven, Cooper Stansbury, Jillian Cwycyshyn, Nicholas Galioto, Alex Gorodetsky, Alvaro Velasquez, Indika Rajapakse","doi":"10.1093/bioinformatics/btaf159","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Integrating Large Language Models (LLMs) with research tools presents technical and reproducibility challenges for biomedical research. While commercial artificial intelligence (AI) systems are easy to adopt, they obscure data provenance, lack transparency, and can generates false information, making them unfit for many research problems. To address these challenges, we developed the Bioinformatics Retrieval Augmented Digital (BRAD) agent software system.</p><p><strong>Results: </strong>Here, we introduce BRAD, an agentic system that integrates LLMs with external tools and data to streamline research workflows. BRAD's modular agents retrieve information from literature, custom software, and online databases while maintaining transparent protocols to increase the reliability of AI generated results. We apply BRAD to a biomarker discovery pipeline, automating both execution and the generation of enrichment reports. This workflow contextualizes user data within the literature, enabling a level of interpretation and automation that surpasses conventional research tools. Beyond the workflow we highlight here, BRAD is a flexible system that has been deployed in other applications including a chatbot, video RAG, and analysis of single cell data.</p><p><strong>Availability and implementation: </strong>The source code for BRAD is available at https://github.com/Jpickard1/BRAD; Information for pip installation, tutorials, documentation, and further information can be found at: ReadTheDocs.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":"41 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064167/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic biomarker discovery and enrichment with BRAD.\",\"authors\":\"Joshua Pickard, Ram Prakash, Marc Andrew Choi, Natalie Oliven, Cooper Stansbury, Jillian Cwycyshyn, Nicholas Galioto, Alex Gorodetsky, Alvaro Velasquez, Indika Rajapakse\",\"doi\":\"10.1093/bioinformatics/btaf159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Integrating Large Language Models (LLMs) with research tools presents technical and reproducibility challenges for biomedical research. While commercial artificial intelligence (AI) systems are easy to adopt, they obscure data provenance, lack transparency, and can generates false information, making them unfit for many research problems. To address these challenges, we developed the Bioinformatics Retrieval Augmented Digital (BRAD) agent software system.</p><p><strong>Results: </strong>Here, we introduce BRAD, an agentic system that integrates LLMs with external tools and data to streamline research workflows. BRAD's modular agents retrieve information from literature, custom software, and online databases while maintaining transparent protocols to increase the reliability of AI generated results. We apply BRAD to a biomarker discovery pipeline, automating both execution and the generation of enrichment reports. This workflow contextualizes user data within the literature, enabling a level of interpretation and automation that surpasses conventional research tools. Beyond the workflow we highlight here, BRAD is a flexible system that has been deployed in other applications including a chatbot, video RAG, and analysis of single cell data.</p><p><strong>Availability and implementation: </strong>The source code for BRAD is available at https://github.com/Jpickard1/BRAD; Information for pip installation, tutorials, documentation, and further information can be found at: ReadTheDocs.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\"41 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12064167/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:将大型语言模型(llm)与研究工具集成为生物医学研究提出了技术和可重复性挑战。虽然商业人工智能(AI)系统易于采用,但它们模糊了数据来源,缺乏透明度,并可能产生虚假信息,使其不适合用于许多研究问题。为了解决这些挑战,我们开发了生物信息学检索增强数字(BRAD)代理软件系统。结果:在这里,我们介绍了BRAD,这是一个将法学硕士与外部工具和数据集成在一起的代理系统,以简化研究工作流程。BRAD的模块化代理从文献、定制软件和在线数据库中检索信息,同时保持透明的协议,以提高人工智能生成结果的可靠性。我们将BRAD应用于生物标记物发现管道,自动化执行和生成富集报告。该工作流将文献中的用户数据上下文化,实现了超越传统研究工具的解释和自动化水平。除了我们在这里强调的工作流程之外,BRAD是一个灵活的系统,已经部署在其他应用程序中,包括聊天机器人、视频RAG和单细胞数据分析。可用性和实现:BRAD的源代码可从https://github.com/Jpickard1/BRAD获得;有关pip安装、教程、文档和更多信息的信息可以在ReadTheDocs找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic biomarker discovery and enrichment with BRAD.

Motivation: Integrating Large Language Models (LLMs) with research tools presents technical and reproducibility challenges for biomedical research. While commercial artificial intelligence (AI) systems are easy to adopt, they obscure data provenance, lack transparency, and can generates false information, making them unfit for many research problems. To address these challenges, we developed the Bioinformatics Retrieval Augmented Digital (BRAD) agent software system.

Results: Here, we introduce BRAD, an agentic system that integrates LLMs with external tools and data to streamline research workflows. BRAD's modular agents retrieve information from literature, custom software, and online databases while maintaining transparent protocols to increase the reliability of AI generated results. We apply BRAD to a biomarker discovery pipeline, automating both execution and the generation of enrichment reports. This workflow contextualizes user data within the literature, enabling a level of interpretation and automation that surpasses conventional research tools. Beyond the workflow we highlight here, BRAD is a flexible system that has been deployed in other applications including a chatbot, video RAG, and analysis of single cell data.

Availability and implementation: The source code for BRAD is available at https://github.com/Jpickard1/BRAD; Information for pip installation, tutorials, documentation, and further information can be found at: ReadTheDocs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信