自动超声图像对齐诊断小儿前臂远端骨折。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Peng Liu, Yujia Hu, Jurek Schultz, Jinjing Xu, Christoph von Schrottenberg, Philipp Schwerk, Josephine Pohl, Guido Fitze, Stefanie Speidel, Micha Pfeiffer
{"title":"自动超声图像对齐诊断小儿前臂远端骨折。","authors":"Peng Liu, Yujia Hu, Jurek Schultz, Jinjing Xu, Christoph von Schrottenberg, Philipp Schwerk, Josephine Pohl, Guido Fitze, Stefanie Speidel, Micha Pfeiffer","doi":"10.1007/s11548-025-03361-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The study aims to develop an automatic method to align ultrasound images of the distal forearm for diagnosing pediatric fractures. This approach seeks to bypass the reliance on X-rays for fracture diagnosis, thereby minimizing radiation exposure and making the process less painful, as well as creating a more child-friendly diagnostic pathway.</p><p><strong>Methods: </strong>We present a fully automatic pipeline to align paired POCUS images. We first leverage a deep learning model to delineate bone boundaries, from which we obtain key anatomical landmarks. These landmarks are finally used to guide the optimization-based alignment process, for which we propose three optimization constraints: aligning specific points, ensuring parallel orientation of the bone segments, and matching the bone widths.</p><p><strong>Results: </strong>The method demonstrated high alignment accuracy compared to reference X-rays in terms of boundary distances. A morphology experiment including fracture classification and angulation measurement presents comparable performance when based on the merged ultrasound images and conventional X-rays, justifying the effectiveness of our method in these cases.</p><p><strong>Conclusions: </strong>The study introduced an effective and fully automatic pipeline for aligning ultrasound images, showing potential to replace X-rays for diagnosing pediatric distal forearm fractures. Initial tests show that surgeons find many of our results sufficient for diagnosis. Future work will focus on increasing dataset size to improve diagnostic accuracy and reliability.</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":" ","pages":"1249-1254"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167337/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automatic ultrasound image alignment for diagnosis of pediatric distal forearm fractures.\",\"authors\":\"Peng Liu, Yujia Hu, Jurek Schultz, Jinjing Xu, Christoph von Schrottenberg, Philipp Schwerk, Josephine Pohl, Guido Fitze, Stefanie Speidel, Micha Pfeiffer\",\"doi\":\"10.1007/s11548-025-03361-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The study aims to develop an automatic method to align ultrasound images of the distal forearm for diagnosing pediatric fractures. This approach seeks to bypass the reliance on X-rays for fracture diagnosis, thereby minimizing radiation exposure and making the process less painful, as well as creating a more child-friendly diagnostic pathway.</p><p><strong>Methods: </strong>We present a fully automatic pipeline to align paired POCUS images. We first leverage a deep learning model to delineate bone boundaries, from which we obtain key anatomical landmarks. These landmarks are finally used to guide the optimization-based alignment process, for which we propose three optimization constraints: aligning specific points, ensuring parallel orientation of the bone segments, and matching the bone widths.</p><p><strong>Results: </strong>The method demonstrated high alignment accuracy compared to reference X-rays in terms of boundary distances. A morphology experiment including fracture classification and angulation measurement presents comparable performance when based on the merged ultrasound images and conventional X-rays, justifying the effectiveness of our method in these cases.</p><p><strong>Conclusions: </strong>The study introduced an effective and fully automatic pipeline for aligning ultrasound images, showing potential to replace X-rays for diagnosing pediatric distal forearm fractures. Initial tests show that surgeons find many of our results sufficient for diagnosis. Future work will focus on increasing dataset size to improve diagnostic accuracy and reliability.</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":\" \",\"pages\":\"1249-1254\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12167337/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-025-03361-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-025-03361-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究旨在开发一种自动对齐前臂远端超声图像的方法,用于诊断儿童骨折。这种方法旨在绕过对x射线的依赖进行骨折诊断,从而最大限度地减少辐射暴露,减少过程中的痛苦,并创造一个更适合儿童的诊断途径。方法:提出了一种全自动的POCUS图像对齐方法。我们首先利用深度学习模型来描绘骨骼边界,从中我们获得关键的解剖标志。最后利用这些标记来指导基于优化的对齐过程,为此我们提出了三个优化约束:对齐特定点、确保骨段平行方向和匹配骨宽度。结果:与参考x射线相比,该方法在边界距离方面具有较高的对准精度。形态学实验包括裂缝分类和角度测量,当基于合并的超声图像和常规x射线时,显示出相当的性能,证明了我们的方法在这些情况下的有效性。结论:该研究引入了一种有效且全自动的超声图像对齐管道,显示了替代x射线诊断小儿前臂远端骨折的潜力。初步测试表明,外科医生认为我们的许多结果足以用于诊断。未来的工作将集中在增加数据集的大小,以提高诊断的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic ultrasound image alignment for diagnosis of pediatric distal forearm fractures.

Purpose: The study aims to develop an automatic method to align ultrasound images of the distal forearm for diagnosing pediatric fractures. This approach seeks to bypass the reliance on X-rays for fracture diagnosis, thereby minimizing radiation exposure and making the process less painful, as well as creating a more child-friendly diagnostic pathway.

Methods: We present a fully automatic pipeline to align paired POCUS images. We first leverage a deep learning model to delineate bone boundaries, from which we obtain key anatomical landmarks. These landmarks are finally used to guide the optimization-based alignment process, for which we propose three optimization constraints: aligning specific points, ensuring parallel orientation of the bone segments, and matching the bone widths.

Results: The method demonstrated high alignment accuracy compared to reference X-rays in terms of boundary distances. A morphology experiment including fracture classification and angulation measurement presents comparable performance when based on the merged ultrasound images and conventional X-rays, justifying the effectiveness of our method in these cases.

Conclusions: The study introduced an effective and fully automatic pipeline for aligning ultrasound images, showing potential to replace X-rays for diagnosing pediatric distal forearm fractures. Initial tests show that surgeons find many of our results sufficient for diagnosis. Future work will focus on increasing dataset size to improve diagnostic accuracy and reliability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信