humscs衍生的细胞外囊泡递送RPS27A蛋白操纵MDM2-P53轴并改善帕金森病的神经功能障碍

IF 6.2
Jinyu Xu, Hongbing Lei, Chunhui Yang, Yiqing Qiu, Xi Wu
{"title":"humscs衍生的细胞外囊泡递送RPS27A蛋白操纵MDM2-P53轴并改善帕金森病的神经功能障碍","authors":"Jinyu Xu, Hongbing Lei, Chunhui Yang, Yiqing Qiu, Xi Wu","doi":"10.1007/s11481-025-10209-2","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular vesicles released from mesenchymal stem cells (MSCs-EV) have shown anti-inflammatory effects in Parkinson's disease (PD). This study was designed to assess the neuroprotective effects of human umbilical cord MSCs (hucMSCs) and the possible mechanisms involved. SH-SY5Y cells were induced with MPP<sup>+</sup>, and the impact of hucMSCs-EV on the damage to SH-SY5Y cells was examined. Mice were induced with PD-like symptoms by MPTP and the effects of hucMSCs-EV on neurological damage in mouse brain tissue were detected as well. HucMSCs-EV inhibited apoptosis and oxidative stress in MPP<sup>+</sup>-induced SH-SY5Y cells. HucMSCs-EV suppressed behavioral deficits and neuronal apoptosis in MPTP-induced mice, with an increased number of dopamine neurons in brain tissues and decreased p-alpha-syn expression in dopamine neurons. The expression of ribosomal protein S27A (RPS27A) in SH-SY5Y cells was elevated after co-culture of neurons and hucMSCs-EV, and RPS27A silencing abated the effect of hucMSCs-EV in vivo and in vitro. RPS27A bound to the MDM2 promoter, thus promoting P53 ubiquitination and degradation. MDM2 overexpression strengthened the therapeutic effect of hucMSCs-EV. We conclude that hucMSCs-EV promote the interaction between RPS27A and MDM2 by delivering RPS27A, which regulates the MDM2-P53 axis to promote degradation of P53 to ameliorate neurological damage in PD.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"52"},"PeriodicalIF":6.2000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HucMSCs-Derived Extracellular Vesicles Deliver RPS27A Protein to Manipulate the MDM2-P53 Axis and Ameliorate Neurological Dysfunction in Parkinson's Disease.\",\"authors\":\"Jinyu Xu, Hongbing Lei, Chunhui Yang, Yiqing Qiu, Xi Wu\",\"doi\":\"10.1007/s11481-025-10209-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Extracellular vesicles released from mesenchymal stem cells (MSCs-EV) have shown anti-inflammatory effects in Parkinson's disease (PD). This study was designed to assess the neuroprotective effects of human umbilical cord MSCs (hucMSCs) and the possible mechanisms involved. SH-SY5Y cells were induced with MPP<sup>+</sup>, and the impact of hucMSCs-EV on the damage to SH-SY5Y cells was examined. Mice were induced with PD-like symptoms by MPTP and the effects of hucMSCs-EV on neurological damage in mouse brain tissue were detected as well. HucMSCs-EV inhibited apoptosis and oxidative stress in MPP<sup>+</sup>-induced SH-SY5Y cells. HucMSCs-EV suppressed behavioral deficits and neuronal apoptosis in MPTP-induced mice, with an increased number of dopamine neurons in brain tissues and decreased p-alpha-syn expression in dopamine neurons. The expression of ribosomal protein S27A (RPS27A) in SH-SY5Y cells was elevated after co-culture of neurons and hucMSCs-EV, and RPS27A silencing abated the effect of hucMSCs-EV in vivo and in vitro. RPS27A bound to the MDM2 promoter, thus promoting P53 ubiquitination and degradation. MDM2 overexpression strengthened the therapeutic effect of hucMSCs-EV. We conclude that hucMSCs-EV promote the interaction between RPS27A and MDM2 by delivering RPS27A, which regulates the MDM2-P53 axis to promote degradation of P53 to ameliorate neurological damage in PD.</p>\",\"PeriodicalId\":73858,\"journal\":{\"name\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"volume\":\"20 1\",\"pages\":\"52\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-025-10209-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-025-10209-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

间充质干细胞(MSCs-EV)释放的细胞外囊泡在帕金森病(PD)中显示出抗炎作用。本研究旨在评估人脐带间充质干细胞(hucMSCs)的神经保护作用及其可能机制。用MPP+诱导SH-SY5Y细胞,观察humscs - ev对SH-SY5Y细胞损伤的影响。用MPTP诱导小鼠出现pd样症状,并检测humscs - ev对小鼠脑组织神经损伤的影响。HucMSCs-EV抑制MPP+诱导的SH-SY5Y细胞凋亡和氧化应激。HucMSCs-EV抑制mptp诱导小鼠的行为缺陷和神经元凋亡,脑组织中多巴胺神经元数量增加,多巴胺神经元中p- α -syn表达降低。神经元与hucMSCs-EV共培养后,SH-SY5Y细胞中核糖体蛋白S27A (RPS27A)的表达升高,RPS27A的沉默在体内和体外减弱了hucMSCs-EV的作用。RPS27A结合MDM2启动子,从而促进P53泛素化和降解。MDM2过表达增强了humscs - ev的治疗效果。我们得出结论,humscs - ev通过传递RPS27A促进RPS27A和MDM2之间的相互作用,RPS27A调节MDM2-P53轴,促进P53的降解,从而改善PD的神经损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HucMSCs-Derived Extracellular Vesicles Deliver RPS27A Protein to Manipulate the MDM2-P53 Axis and Ameliorate Neurological Dysfunction in Parkinson's Disease.

Extracellular vesicles released from mesenchymal stem cells (MSCs-EV) have shown anti-inflammatory effects in Parkinson's disease (PD). This study was designed to assess the neuroprotective effects of human umbilical cord MSCs (hucMSCs) and the possible mechanisms involved. SH-SY5Y cells were induced with MPP+, and the impact of hucMSCs-EV on the damage to SH-SY5Y cells was examined. Mice were induced with PD-like symptoms by MPTP and the effects of hucMSCs-EV on neurological damage in mouse brain tissue were detected as well. HucMSCs-EV inhibited apoptosis and oxidative stress in MPP+-induced SH-SY5Y cells. HucMSCs-EV suppressed behavioral deficits and neuronal apoptosis in MPTP-induced mice, with an increased number of dopamine neurons in brain tissues and decreased p-alpha-syn expression in dopamine neurons. The expression of ribosomal protein S27A (RPS27A) in SH-SY5Y cells was elevated after co-culture of neurons and hucMSCs-EV, and RPS27A silencing abated the effect of hucMSCs-EV in vivo and in vitro. RPS27A bound to the MDM2 promoter, thus promoting P53 ubiquitination and degradation. MDM2 overexpression strengthened the therapeutic effect of hucMSCs-EV. We conclude that hucMSCs-EV promote the interaction between RPS27A and MDM2 by delivering RPS27A, which regulates the MDM2-P53 axis to promote degradation of P53 to ameliorate neurological damage in PD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信