{"title":"利用HELIX存储生物医学图像的DNA数据。","authors":"Guanjin Qu, Zihui Yan, Xin Chen, Huaming Wu","doi":"10.1038/s43588-025-00793-x","DOIUrl":null,"url":null,"abstract":"<p><p>Deoxyribonucleic acid (DNA) data storage is expected to become a key medium for large-scale data. Biomedical data images typically require substantial storage space over extended periods, making them ideal candidates for DNA data storage. However, existing DNA data storage models are primarily designed for generic files and lack a comprehensive retrieval system for biomedical images. Here, to address this, we propose HELIX, a DNA-based storage system for biomedical images. HELIX introduces an image-compression algorithm tailored to the characteristics of biomedical images, achieving high compression rates and robust error tolerance. In addition, HELIX incorporates an error-correcting encoding algorithm that eliminates the need for indexing, enhancing storage density and decoding speed. We utilize a deep learning-based image repair algorithm for the predictive restoration of partially missing image blocks. In our in vitro experiments, we successfully stored two spatiotemporal genomics images. This sequencing process achieved 97.20% image quality at a depth of 7× coverage.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":""},"PeriodicalIF":12.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNA data storage for biomedical images using HELIX.\",\"authors\":\"Guanjin Qu, Zihui Yan, Xin Chen, Huaming Wu\",\"doi\":\"10.1038/s43588-025-00793-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Deoxyribonucleic acid (DNA) data storage is expected to become a key medium for large-scale data. Biomedical data images typically require substantial storage space over extended periods, making them ideal candidates for DNA data storage. However, existing DNA data storage models are primarily designed for generic files and lack a comprehensive retrieval system for biomedical images. Here, to address this, we propose HELIX, a DNA-based storage system for biomedical images. HELIX introduces an image-compression algorithm tailored to the characteristics of biomedical images, achieving high compression rates and robust error tolerance. In addition, HELIX incorporates an error-correcting encoding algorithm that eliminates the need for indexing, enhancing storage density and decoding speed. We utilize a deep learning-based image repair algorithm for the predictive restoration of partially missing image blocks. In our in vitro experiments, we successfully stored two spatiotemporal genomics images. This sequencing process achieved 97.20% image quality at a depth of 7× coverage.</p>\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43588-025-00793-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00793-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
DNA data storage for biomedical images using HELIX.
Deoxyribonucleic acid (DNA) data storage is expected to become a key medium for large-scale data. Biomedical data images typically require substantial storage space over extended periods, making them ideal candidates for DNA data storage. However, existing DNA data storage models are primarily designed for generic files and lack a comprehensive retrieval system for biomedical images. Here, to address this, we propose HELIX, a DNA-based storage system for biomedical images. HELIX introduces an image-compression algorithm tailored to the characteristics of biomedical images, achieving high compression rates and robust error tolerance. In addition, HELIX incorporates an error-correcting encoding algorithm that eliminates the need for indexing, enhancing storage density and decoding speed. We utilize a deep learning-based image repair algorithm for the predictive restoration of partially missing image blocks. In our in vitro experiments, we successfully stored two spatiotemporal genomics images. This sequencing process achieved 97.20% image quality at a depth of 7× coverage.