gtp结合KRAS和mTOR对携带KRAS G12C的肺腺癌和鳞状细胞癌的双重抑制作用

IF 8.2 2区 生物学 Q1 CELL BIOLOGY
Masaoki Ito, Yoshihiro Miyata, Shoko Hirano, Nagisa Morihara, Misako Takemoto, Fumiko Irisuna, Kei Kushitani, Kenichi Suda, Junichi Soh, Yukio Takeshima, Yasuhiro Tsutani, Morihito Okada
{"title":"gtp结合KRAS和mTOR对携带KRAS G12C的肺腺癌和鳞状细胞癌的双重抑制作用","authors":"Masaoki Ito, Yoshihiro Miyata, Shoko Hirano, Nagisa Morihara, Misako Takemoto, Fumiko Irisuna, Kei Kushitani, Kenichi Suda, Junichi Soh, Yukio Takeshima, Yasuhiro Tsutani, Morihito Okada","doi":"10.1186/s12964-025-02187-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Kirsten rat sarcoma (KRAS) mutations are somatic variants in lung adenocarcinoma. One of the most prevalent mutations, G12C, has led to the clinical approval of targeted inhibitors for advanced stages in lung cancer. Research has increasingly focused on the efficacy of combination therapies that target multiple tumorigenic pathways. Cases harboring KRAS G12C mutation are heterogenous. We explored alternative changes in genetic pathways and evaluated the effectiveness of combination therapy using several types of cell lines and KRAS inhibitors.</p><p><strong>Methods: </strong>We comprehensively investigated genetic changes induced by KRAS G12C inhibition using RNA sequences and the candidate to inhibit in combination therapy was explored. Three lung cancer cell lines (two adenocarcinoma and one squamous cell carcinoma) and three KRAS G12C inhibitors (AMG 510, MRTX849, and ARS-1620) were used. KRAS G12C and candidate gene were simultaneously inhibited in cell lines and the efficiency of combination therapy was evaluated using clonogenic assays and MTS assay. Pathway activation was assessed via western blotting. A combination index (CI) < 0.8 was considered statistically synergistic.</p><p><strong>Results: </strong>RNA sequences revealed treatment with two of the three KRAS G12C inhibitors led to a significant increase in mTOR expression across all three cell lines. mTOR was targeted in combination therapy; each KRAS G12C inhibitor and mTOR inhibitor (RAD001) combination exhibited synergism (CI < 0.8) in MTS and clonogenic assays. Single inhibition of mTOR induced activation of guanosine triphosphate (GTP)-RAS, thereby activating the RAS-MEK-ERK and PI3K-AKT-mTOR pathways in WB, suggesting mTOR activation is crucial for KRAS-driving lung cancer. A combination strategy targeting KRAS G12C and mTOR abrogated GTP-RAS, pmTOR (Ser2448), and pERK (Thr202/Tyr204) more efficiently.</p><p><strong>Conclusions: </strong>KRAS G12C inhibitor plus RAD001 consistently revealed synergism. Targeting KRAS G12C and mTOR abrogates the RAS-MEK-ERK and PI3K-AKT-mTOR pathways. Our data suggests that a combined strategy targeting GTP-bound KRAS G12C and mTOR shows promise for primary lung cancers with KRAS G12C mutations. This approach may also be effective even for lung cancers harboring KRAS G12C mutation but having different profiles.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"220"},"PeriodicalIF":8.2000,"publicationDate":"2025-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067872/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual inhibition of GTP-bound KRAS and mTOR in lung adenocarcinoma and squamous cell carcinoma harboring KRAS G12C.\",\"authors\":\"Masaoki Ito, Yoshihiro Miyata, Shoko Hirano, Nagisa Morihara, Misako Takemoto, Fumiko Irisuna, Kei Kushitani, Kenichi Suda, Junichi Soh, Yukio Takeshima, Yasuhiro Tsutani, Morihito Okada\",\"doi\":\"10.1186/s12964-025-02187-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Kirsten rat sarcoma (KRAS) mutations are somatic variants in lung adenocarcinoma. One of the most prevalent mutations, G12C, has led to the clinical approval of targeted inhibitors for advanced stages in lung cancer. Research has increasingly focused on the efficacy of combination therapies that target multiple tumorigenic pathways. Cases harboring KRAS G12C mutation are heterogenous. We explored alternative changes in genetic pathways and evaluated the effectiveness of combination therapy using several types of cell lines and KRAS inhibitors.</p><p><strong>Methods: </strong>We comprehensively investigated genetic changes induced by KRAS G12C inhibition using RNA sequences and the candidate to inhibit in combination therapy was explored. Three lung cancer cell lines (two adenocarcinoma and one squamous cell carcinoma) and three KRAS G12C inhibitors (AMG 510, MRTX849, and ARS-1620) were used. KRAS G12C and candidate gene were simultaneously inhibited in cell lines and the efficiency of combination therapy was evaluated using clonogenic assays and MTS assay. Pathway activation was assessed via western blotting. A combination index (CI) < 0.8 was considered statistically synergistic.</p><p><strong>Results: </strong>RNA sequences revealed treatment with two of the three KRAS G12C inhibitors led to a significant increase in mTOR expression across all three cell lines. mTOR was targeted in combination therapy; each KRAS G12C inhibitor and mTOR inhibitor (RAD001) combination exhibited synergism (CI < 0.8) in MTS and clonogenic assays. Single inhibition of mTOR induced activation of guanosine triphosphate (GTP)-RAS, thereby activating the RAS-MEK-ERK and PI3K-AKT-mTOR pathways in WB, suggesting mTOR activation is crucial for KRAS-driving lung cancer. A combination strategy targeting KRAS G12C and mTOR abrogated GTP-RAS, pmTOR (Ser2448), and pERK (Thr202/Tyr204) more efficiently.</p><p><strong>Conclusions: </strong>KRAS G12C inhibitor plus RAD001 consistently revealed synergism. Targeting KRAS G12C and mTOR abrogates the RAS-MEK-ERK and PI3K-AKT-mTOR pathways. Our data suggests that a combined strategy targeting GTP-bound KRAS G12C and mTOR shows promise for primary lung cancers with KRAS G12C mutations. This approach may also be effective even for lung cancers harboring KRAS G12C mutation but having different profiles.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"23 1\",\"pages\":\"220\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067872/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-025-02187-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02187-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:Kirsten大鼠肉瘤(KRAS)突变是肺腺癌的体细胞变异。其中最普遍的突变之一G12C,已经导致靶向抑制剂用于晚期肺癌的临床批准。研究越来越关注针对多种致瘤途径的联合治疗的疗效。携带KRAS G12C突变的病例是异质性的。我们探索了遗传途径的替代变化,并评估了使用几种类型的细胞系和KRAS抑制剂联合治疗的有效性。方法:利用RNA序列综合研究KRAS G12C抑制引起的遗传变化,探索联合治疗中抑制的候选基因。使用3种肺癌细胞系(2种腺癌和1种鳞状细胞癌)和3种KRAS G12C抑制剂(AMG 510、MRTX849和ARS-1620)。KRAS G12C和候选基因在细胞系中同时被抑制,并通过克隆实验和MTS实验评估联合治疗的效果。通过免疫印迹法评估通路激活情况。联合指数(CI)结果:RNA序列显示,三种KRAS G12C抑制剂中的两种处理导致所有三种细胞系中mTOR表达显著增加。mTOR是联合治疗的靶标;各KRAS G12C抑制剂与mTOR抑制剂(RAD001)联合表现出协同作用(CI结论:KRAS G12C抑制剂与RAD001一致表现出协同作用。靶向KRAS G12C和mTOR可消除RAS-MEK-ERK和PI3K-AKT-mTOR通路。我们的数据表明,针对gtp结合的KRAS G12C和mTOR的联合策略有望治疗KRAS G12C突变的原发性肺癌。这种方法甚至可能对携带KRAS G12C突变但具有不同特征的肺癌也有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual inhibition of GTP-bound KRAS and mTOR in lung adenocarcinoma and squamous cell carcinoma harboring KRAS G12C.

Background: Kirsten rat sarcoma (KRAS) mutations are somatic variants in lung adenocarcinoma. One of the most prevalent mutations, G12C, has led to the clinical approval of targeted inhibitors for advanced stages in lung cancer. Research has increasingly focused on the efficacy of combination therapies that target multiple tumorigenic pathways. Cases harboring KRAS G12C mutation are heterogenous. We explored alternative changes in genetic pathways and evaluated the effectiveness of combination therapy using several types of cell lines and KRAS inhibitors.

Methods: We comprehensively investigated genetic changes induced by KRAS G12C inhibition using RNA sequences and the candidate to inhibit in combination therapy was explored. Three lung cancer cell lines (two adenocarcinoma and one squamous cell carcinoma) and three KRAS G12C inhibitors (AMG 510, MRTX849, and ARS-1620) were used. KRAS G12C and candidate gene were simultaneously inhibited in cell lines and the efficiency of combination therapy was evaluated using clonogenic assays and MTS assay. Pathway activation was assessed via western blotting. A combination index (CI) < 0.8 was considered statistically synergistic.

Results: RNA sequences revealed treatment with two of the three KRAS G12C inhibitors led to a significant increase in mTOR expression across all three cell lines. mTOR was targeted in combination therapy; each KRAS G12C inhibitor and mTOR inhibitor (RAD001) combination exhibited synergism (CI < 0.8) in MTS and clonogenic assays. Single inhibition of mTOR induced activation of guanosine triphosphate (GTP)-RAS, thereby activating the RAS-MEK-ERK and PI3K-AKT-mTOR pathways in WB, suggesting mTOR activation is crucial for KRAS-driving lung cancer. A combination strategy targeting KRAS G12C and mTOR abrogated GTP-RAS, pmTOR (Ser2448), and pERK (Thr202/Tyr204) more efficiently.

Conclusions: KRAS G12C inhibitor plus RAD001 consistently revealed synergism. Targeting KRAS G12C and mTOR abrogates the RAS-MEK-ERK and PI3K-AKT-mTOR pathways. Our data suggests that a combined strategy targeting GTP-bound KRAS G12C and mTOR shows promise for primary lung cancers with KRAS G12C mutations. This approach may also be effective even for lung cancers harboring KRAS G12C mutation but having different profiles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信