贝叶斯多层次成分数据分析:介绍、评价与应用。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY
Flora Le, Tyman E Stanford, Dorothea Dumuid, Joshua F Wiley
{"title":"贝叶斯多层次成分数据分析:介绍、评价与应用。","authors":"Flora Le, Tyman E Stanford, Dorothea Dumuid, Joshua F Wiley","doi":"10.1037/met0000750","DOIUrl":null,"url":null,"abstract":"<p><p>Multilevel compositional data are data that are repeatedly measured or clustered within groups, and are nonnegative and sum to a constant value. These data arise in various settings, such as intensive, longitudinal studies using ecological momentary assessments and wearable devices. Examples include 24-hr sleep-wake behaviors, sleep architecture, and macronutrients. This article presents an innovative method for analyzing multilevel compositional data using Bayesian inference. We describe the theoretical details of the data and the models, and outline the steps necessary to implement this method. We introduce the R package multilevelcoda to facilitate the application of this method and illustrate using a real data example. An extensive parameter recovery simulation study verified the robust performance of the method. Across all conditions investigated in the simulation study, the fitted models had minimal convergence issues (convergence rate > 99%) and achieved excellent quality parameter estimates and inference, with an average bias of 0.00 (range = -0.09 to 0.05) and coverage of 0.95 (range = 0.93 to 0.97). We conclude the article with recommendations on the use of the Bayesian multilevel compositional data analysis. We hope to promote wider application of this method to gain novel and robust answers to scientific questions. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian multilevel compositional data analysis: Introduction, evaluation, and application.\",\"authors\":\"Flora Le, Tyman E Stanford, Dorothea Dumuid, Joshua F Wiley\",\"doi\":\"10.1037/met0000750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multilevel compositional data are data that are repeatedly measured or clustered within groups, and are nonnegative and sum to a constant value. These data arise in various settings, such as intensive, longitudinal studies using ecological momentary assessments and wearable devices. Examples include 24-hr sleep-wake behaviors, sleep architecture, and macronutrients. This article presents an innovative method for analyzing multilevel compositional data using Bayesian inference. We describe the theoretical details of the data and the models, and outline the steps necessary to implement this method. We introduce the R package multilevelcoda to facilitate the application of this method and illustrate using a real data example. An extensive parameter recovery simulation study verified the robust performance of the method. Across all conditions investigated in the simulation study, the fitted models had minimal convergence issues (convergence rate > 99%) and achieved excellent quality parameter estimates and inference, with an average bias of 0.00 (range = -0.09 to 0.05) and coverage of 0.95 (range = 0.93 to 0.97). We conclude the article with recommendations on the use of the Bayesian multilevel compositional data analysis. We hope to promote wider application of this method to gain novel and robust answers to scientific questions. (PsycInfo Database Record (c) 2025 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000750\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000750","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多层成分数据是重复测量或在组内聚集的数据,非负且和为一个常数值。这些数据出现在各种环境中,例如使用生态瞬时评估和可穿戴设备的密集纵向研究。例子包括24小时睡眠-觉醒行为、睡眠结构和宏量营养素。本文提出了一种利用贝叶斯推理分析多层次成分数据的创新方法。我们描述了数据和模型的理论细节,并概述了实现该方法所需的步骤。为了方便该方法的应用,我们引入了R包中的多级代码,并通过一个实际的数据实例进行了说明。广泛的参数恢复仿真研究验证了该方法的鲁棒性。在模拟研究中调查的所有条件下,拟合模型具有最小的收敛问题(收敛率bbb99 %),并实现了极好的质量参数估计和推断,平均偏差为0.00(范围= -0.09至0.05),覆盖率为0.95(范围= 0.93至0.97)。最后,我们对贝叶斯多层次成分数据分析的应用提出了建议。我们希望促进该方法的更广泛应用,以获得对科学问题的新颖而有力的答案。(PsycInfo Database Record (c) 2025 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian multilevel compositional data analysis: Introduction, evaluation, and application.

Multilevel compositional data are data that are repeatedly measured or clustered within groups, and are nonnegative and sum to a constant value. These data arise in various settings, such as intensive, longitudinal studies using ecological momentary assessments and wearable devices. Examples include 24-hr sleep-wake behaviors, sleep architecture, and macronutrients. This article presents an innovative method for analyzing multilevel compositional data using Bayesian inference. We describe the theoretical details of the data and the models, and outline the steps necessary to implement this method. We introduce the R package multilevelcoda to facilitate the application of this method and illustrate using a real data example. An extensive parameter recovery simulation study verified the robust performance of the method. Across all conditions investigated in the simulation study, the fitted models had minimal convergence issues (convergence rate > 99%) and achieved excellent quality parameter estimates and inference, with an average bias of 0.00 (range = -0.09 to 0.05) and coverage of 0.95 (range = 0.93 to 0.97). We conclude the article with recommendations on the use of the Bayesian multilevel compositional data analysis. We hope to promote wider application of this method to gain novel and robust answers to scientific questions. (PsycInfo Database Record (c) 2025 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信