[运动捕捉数据驱动的神经退行性疾病运动评估研究进展]。

Q4 Medicine
Junlang Wu, Wei Guo, Kexin Luo, Ling He, Guanci Yang
{"title":"[运动捕捉数据驱动的神经退行性疾病运动评估研究进展]。","authors":"Junlang Wu, Wei Guo, Kexin Luo, Ling He, Guanci Yang","doi":"10.7507/1001-5515.202403004","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases (NDDs) are a group of heterogeneous neurological disorders that can cause progressive loss of neurons in the central nervous system or peripheral nervous system, resulting in a decline in motor function. Motion capture, as a high-precision and high-resolution technology for capturing human motion data, drives NDDs motor assessment to effectively extract kinematic features and thus assess the patient's motor ability or disease severity. This paper focuses on the recent research progress in motor assessment of NDDs driven by motion capture data. Based on a brief introduction of NDDs motor assessment datasets, we categorized the assessment methods into three types according to the way of feature extraction and processing: NDDs motor assessment methods based on statistical analysis, machine learning and deep learning. Then, we comparatively analyzed the technical points and characteristics of the three types of methods from the aspects of data composition, data preprocessing, assessment methods, assessment purposes and effects. Finally, we discussed and prospected the development trends of NDDs motor assessment.</p>","PeriodicalId":39324,"journal":{"name":"生物医学工程学杂志","volume":"42 2","pages":"396-403"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035630/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Research progress in motor assessment of neurodegenerative diseases driven by motion capture data].\",\"authors\":\"Junlang Wu, Wei Guo, Kexin Luo, Ling He, Guanci Yang\",\"doi\":\"10.7507/1001-5515.202403004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurodegenerative diseases (NDDs) are a group of heterogeneous neurological disorders that can cause progressive loss of neurons in the central nervous system or peripheral nervous system, resulting in a decline in motor function. Motion capture, as a high-precision and high-resolution technology for capturing human motion data, drives NDDs motor assessment to effectively extract kinematic features and thus assess the patient's motor ability or disease severity. This paper focuses on the recent research progress in motor assessment of NDDs driven by motion capture data. Based on a brief introduction of NDDs motor assessment datasets, we categorized the assessment methods into three types according to the way of feature extraction and processing: NDDs motor assessment methods based on statistical analysis, machine learning and deep learning. Then, we comparatively analyzed the technical points and characteristics of the three types of methods from the aspects of data composition, data preprocessing, assessment methods, assessment purposes and effects. Finally, we discussed and prospected the development trends of NDDs motor assessment.</p>\",\"PeriodicalId\":39324,\"journal\":{\"name\":\"生物医学工程学杂志\",\"volume\":\"42 2\",\"pages\":\"396-403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12035630/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"生物医学工程学杂志\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.7507/1001-5515.202403004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"生物医学工程学杂志","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.7507/1001-5515.202403004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

神经退行性疾病(ndd)是一组异质性神经系统疾病,可引起中枢神经系统或周围神经系统神经元的进行性损失,导致运动功能下降。运动捕捉作为一种高精度、高分辨率的人体运动数据捕获技术,驱动ndd运动评估,有效提取运动特征,从而评估患者的运动能力或疾病严重程度。本文重点介绍了近年来运动捕捉数据驱动下ndd运动评估的研究进展。在简要介绍ndd电机评估数据集的基础上,根据特征提取和处理的方式将评估方法分为三类:基于统计分析的ndd电机评估方法、基于机器学习的ndd电机评估方法和基于深度学习的ndd电机评估方法。然后,从数据组成、数据预处理、评估方法、评估目的和效果等方面比较分析了三类方法的技术要点和特点。最后,对ndd电机评估的发展趋势进行了讨论和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Research progress in motor assessment of neurodegenerative diseases driven by motion capture data].

Neurodegenerative diseases (NDDs) are a group of heterogeneous neurological disorders that can cause progressive loss of neurons in the central nervous system or peripheral nervous system, resulting in a decline in motor function. Motion capture, as a high-precision and high-resolution technology for capturing human motion data, drives NDDs motor assessment to effectively extract kinematic features and thus assess the patient's motor ability or disease severity. This paper focuses on the recent research progress in motor assessment of NDDs driven by motion capture data. Based on a brief introduction of NDDs motor assessment datasets, we categorized the assessment methods into three types according to the way of feature extraction and processing: NDDs motor assessment methods based on statistical analysis, machine learning and deep learning. Then, we comparatively analyzed the technical points and characteristics of the three types of methods from the aspects of data composition, data preprocessing, assessment methods, assessment purposes and effects. Finally, we discussed and prospected the development trends of NDDs motor assessment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
生物医学工程学杂志
生物医学工程学杂志 Medicine-Medicine (all)
CiteScore
0.80
自引率
0.00%
发文量
4868
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信