{"title":"单细胞RNA测序(scRNA-seq)及其对动脉粥样硬化细胞异质性的见解。","authors":"Baixue Yu , Miron Sopic , Judith C. Sluimer","doi":"10.1016/j.vph.2025.107499","DOIUrl":null,"url":null,"abstract":"<div><div>Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular diversity in human biology, providing novel insights into disease mechanisms. In cardiovascular disease (CVD), scRNA-seq enables precise mapping of complex cell populations, uncovering unique cell types and states that influence disease progression and suggest new therapeutic targets. In atherosclerosis (AS), scRNA-seq has redefined plaque pathology by identifying distinct cell types, including endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, macrophages, T cells, and B cells, each with specific roles in plaque stability, inflammation, and disease progression. In our review, we summarized these major cellular populations and their cellular heterogeneity in non-diseased and atherosclerotic aorta, as identified by scRNA-seq in mice and human tissues. We discussed conserved and species-specific subpopulations, their defining markers, and their functional implications in plaque progression. In addition, we integrated findings from scRNA-seq with experimental studies to highlight key molecular targets with therapeutic potential. In the future, these insights offer a refined cellular and molecular framework of atherosclerosis and may help the development of targeted interventions to promote plaque stabilization and reduce cardiovascular risk.</div></div>","PeriodicalId":23949,"journal":{"name":"Vascular pharmacology","volume":"159 ","pages":"Article 107499"},"PeriodicalIF":3.5000,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell RNA sequencing (scRNA-seq) and its insights into cellular heterogeneity in atherosclerosis\",\"authors\":\"Baixue Yu , Miron Sopic , Judith C. Sluimer\",\"doi\":\"10.1016/j.vph.2025.107499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular diversity in human biology, providing novel insights into disease mechanisms. In cardiovascular disease (CVD), scRNA-seq enables precise mapping of complex cell populations, uncovering unique cell types and states that influence disease progression and suggest new therapeutic targets. In atherosclerosis (AS), scRNA-seq has redefined plaque pathology by identifying distinct cell types, including endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, macrophages, T cells, and B cells, each with specific roles in plaque stability, inflammation, and disease progression. In our review, we summarized these major cellular populations and their cellular heterogeneity in non-diseased and atherosclerotic aorta, as identified by scRNA-seq in mice and human tissues. We discussed conserved and species-specific subpopulations, their defining markers, and their functional implications in plaque progression. In addition, we integrated findings from scRNA-seq with experimental studies to highlight key molecular targets with therapeutic potential. In the future, these insights offer a refined cellular and molecular framework of atherosclerosis and may help the development of targeted interventions to promote plaque stabilization and reduce cardiovascular risk.</div></div>\",\"PeriodicalId\":23949,\"journal\":{\"name\":\"Vascular pharmacology\",\"volume\":\"159 \",\"pages\":\"Article 107499\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vascular pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537189125000382\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vascular pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537189125000382","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Single-cell RNA sequencing (scRNA-seq) and its insights into cellular heterogeneity in atherosclerosis
Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cellular diversity in human biology, providing novel insights into disease mechanisms. In cardiovascular disease (CVD), scRNA-seq enables precise mapping of complex cell populations, uncovering unique cell types and states that influence disease progression and suggest new therapeutic targets. In atherosclerosis (AS), scRNA-seq has redefined plaque pathology by identifying distinct cell types, including endothelial cells (ECs), smooth muscle cells (SMCs), fibroblasts, macrophages, T cells, and B cells, each with specific roles in plaque stability, inflammation, and disease progression. In our review, we summarized these major cellular populations and their cellular heterogeneity in non-diseased and atherosclerotic aorta, as identified by scRNA-seq in mice and human tissues. We discussed conserved and species-specific subpopulations, their defining markers, and their functional implications in plaque progression. In addition, we integrated findings from scRNA-seq with experimental studies to highlight key molecular targets with therapeutic potential. In the future, these insights offer a refined cellular and molecular framework of atherosclerosis and may help the development of targeted interventions to promote plaque stabilization and reduce cardiovascular risk.
期刊介绍:
Vascular Pharmacology publishes papers, which contains results of all aspects of biology and pharmacology of the vascular system.
Papers are encouraged in basic, translational and clinical aspects of Vascular Biology and Pharmacology, utilizing approaches ranging from molecular biology to integrative physiology. All papers are in English.
The Journal publishes review articles which include vascular aspects of thrombosis, inflammation, cell signalling, atherosclerosis, and lipid metabolism.