二倍体赋予裂糖酵母基因组不稳定性。

IF 5.1 3区 生物学 Q2 GENETICS & HEREDITY
Genetics Pub Date : 2025-06-04 DOI:10.1093/genetics/iyaf078
Joshua M Park, Daniel F Pinski, Susan L Forsburg
{"title":"二倍体赋予裂糖酵母基因组不稳定性。","authors":"Joshua M Park, Daniel F Pinski, Susan L Forsburg","doi":"10.1093/genetics/iyaf078","DOIUrl":null,"url":null,"abstract":"<p><p>Whole genome duplication, or polyploidy, has been implicated in driving genome instability and tumorigenesis. Recent studies suggest that polyploidy in tumors promotes cancer genome evolution, progression, and chemoresistance resulting in worse prognosis of survival. The mechanisms by which whole genome duplications confer genome instability are not yet fully understood. In this study, we use Schizosaccharomyces pombe (fission yeast) diploids to investigate how whole genome duplication affects genome maintenance and response to stress. We find that S. pombe diploids are sensitive to replication stress and DNA damage, exhibit high levels of loss of heterozygosity, and become dependent on a group of ploidy-specific lethal genes for viability. These findings are observed in other eukaryotic models suggesting conserved consequences of polyploidy. We further investigate ploidy-specific lethal genes by depleting them using an auxin-inducible degron system to elucidate the mechanisms of genome maintenance in diploids. Overall, this work provides new insights on how whole genome duplications lead to genome instability.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135182/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diploidy confers genomic instability in Schizosaccharomyces pombe.\",\"authors\":\"Joshua M Park, Daniel F Pinski, Susan L Forsburg\",\"doi\":\"10.1093/genetics/iyaf078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Whole genome duplication, or polyploidy, has been implicated in driving genome instability and tumorigenesis. Recent studies suggest that polyploidy in tumors promotes cancer genome evolution, progression, and chemoresistance resulting in worse prognosis of survival. The mechanisms by which whole genome duplications confer genome instability are not yet fully understood. In this study, we use Schizosaccharomyces pombe (fission yeast) diploids to investigate how whole genome duplication affects genome maintenance and response to stress. We find that S. pombe diploids are sensitive to replication stress and DNA damage, exhibit high levels of loss of heterozygosity, and become dependent on a group of ploidy-specific lethal genes for viability. These findings are observed in other eukaryotic models suggesting conserved consequences of polyploidy. We further investigate ploidy-specific lethal genes by depleting them using an auxin-inducible degron system to elucidate the mechanisms of genome maintenance in diploids. Overall, this work provides new insights on how whole genome duplications lead to genome instability.</p>\",\"PeriodicalId\":48925,\"journal\":{\"name\":\"Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12135182/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/genetics/iyaf078\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyaf078","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

全基因组复制,或多倍体,已涉及驱动基因组不稳定和肿瘤发生。最近的研究表明,肿瘤中的多倍体促进了肿瘤基因组的进化、进展和化疗耐药,导致生存预后恶化。全基因组复制导致基因组不稳定的机制尚不完全清楚。在这项研究中,我们使用裂糖酵母(分裂酵母)二倍体来研究全基因组复制如何影响基因组的维持和对应激的反应。我们发现pombe双倍体对复制胁迫和DNA损伤敏感,表现出高水平的杂合性损失,并且依赖于一组倍性特异性致死基因来维持生存。这些发现在其他真核生物模型中也被观察到,表明多倍体的保守后果。为了进一步研究二倍体基因组维持的机制,我们使用生长素诱导的退化系统来消耗倍性特异性致死基因。总的来说,这项工作为全基因组复制如何导致基因组不稳定提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diploidy confers genomic instability in Schizosaccharomyces pombe.

Whole genome duplication, or polyploidy, has been implicated in driving genome instability and tumorigenesis. Recent studies suggest that polyploidy in tumors promotes cancer genome evolution, progression, and chemoresistance resulting in worse prognosis of survival. The mechanisms by which whole genome duplications confer genome instability are not yet fully understood. In this study, we use Schizosaccharomyces pombe (fission yeast) diploids to investigate how whole genome duplication affects genome maintenance and response to stress. We find that S. pombe diploids are sensitive to replication stress and DNA damage, exhibit high levels of loss of heterozygosity, and become dependent on a group of ploidy-specific lethal genes for viability. These findings are observed in other eukaryotic models suggesting conserved consequences of polyploidy. We further investigate ploidy-specific lethal genes by depleting them using an auxin-inducible degron system to elucidate the mechanisms of genome maintenance in diploids. Overall, this work provides new insights on how whole genome duplications lead to genome instability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genetics
Genetics GENETICS & HEREDITY-
CiteScore
6.90
自引率
6.10%
发文量
177
审稿时长
1.5 months
期刊介绍: GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work. While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal. The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists. GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信