应激颗粒:神经退行性疾病的新参与者。

IF 10.8 1区 医学 Q1 NEUROSCIENCES
Lin Yuan, Li-Hong Mao, Yong-Ye Huang, Tiago F Outeiro, Wen Li, Tuane C R G Vieira, Jia-Yi Li
{"title":"应激颗粒:神经退行性疾病的新参与者。","authors":"Lin Yuan, Li-Hong Mao, Yong-Ye Huang, Tiago F Outeiro, Wen Li, Tuane C R G Vieira, Jia-Yi Li","doi":"10.1186/s40035-025-00482-9","DOIUrl":null,"url":null,"abstract":"<p><p>Stress granules (SGs) are membraneless organelles formed in the cellular cytoplasm under stressful conditions through liquid-liquid phase separation (LLPS). SG assembly can be both dependent and independent of the eIF2α pathway, whereas cellular protein quality control systems mediate SG disassembly. Chaperones and specific domains of RNA-binding proteins strongly contribute to the regulation SG dynamics. Chronic stress, arising in association with aging, may promote persistent SGs that are difficult to disassemble, thereby acting as a potential pathological nidus for protein aggregation in neurodegenerative diseases (NDDs). In this review, we discuss the dynamics of SGs and the factors involved with SG assembly and disassembly. We also highlight the relationship among LLPS, SGs, and the pathogenesis of different NDDs. More importantly, we summarize SG assembly-disassembly, which may be a double-edged sword in the pathophysiology of NDDs. This review aims to provide new insights into the biology and pathology of LLPS, SGs, and NDDs.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"14 1","pages":"22"},"PeriodicalIF":10.8000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067921/pdf/","citationCount":"0","resultStr":"{\"title\":\"Stress granules: emerging players in neurodegenerative diseases.\",\"authors\":\"Lin Yuan, Li-Hong Mao, Yong-Ye Huang, Tiago F Outeiro, Wen Li, Tuane C R G Vieira, Jia-Yi Li\",\"doi\":\"10.1186/s40035-025-00482-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stress granules (SGs) are membraneless organelles formed in the cellular cytoplasm under stressful conditions through liquid-liquid phase separation (LLPS). SG assembly can be both dependent and independent of the eIF2α pathway, whereas cellular protein quality control systems mediate SG disassembly. Chaperones and specific domains of RNA-binding proteins strongly contribute to the regulation SG dynamics. Chronic stress, arising in association with aging, may promote persistent SGs that are difficult to disassemble, thereby acting as a potential pathological nidus for protein aggregation in neurodegenerative diseases (NDDs). In this review, we discuss the dynamics of SGs and the factors involved with SG assembly and disassembly. We also highlight the relationship among LLPS, SGs, and the pathogenesis of different NDDs. More importantly, we summarize SG assembly-disassembly, which may be a double-edged sword in the pathophysiology of NDDs. This review aims to provide new insights into the biology and pathology of LLPS, SGs, and NDDs.</p>\",\"PeriodicalId\":23269,\"journal\":{\"name\":\"Translational Neurodegeneration\",\"volume\":\"14 1\",\"pages\":\"22\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12067921/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40035-025-00482-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40035-025-00482-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

应激颗粒(Stress granules, SGs)是在应激条件下通过液-液相分离(LLPS)在细胞质中形成的无膜细胞器。SG的组装既可以依赖也可以独立于eIF2α途径,而细胞蛋白质量控制系统介导SG的拆卸。伴蛋白和rna结合蛋白的特定结构域在调节SG动力学中起重要作用。与衰老相关的慢性应激可促进难以分解的持续性SGs,从而作为神经退行性疾病(ndd)中蛋白质聚集的潜在病理病灶。本文主要讨论了SG的动力学特性以及影响SG组装和拆卸的因素。我们还强调了LLPS、SGs和不同ndd发病机制之间的关系。更重要的是,我们总结了SG组装-拆卸,这可能是ndd病理生理中的一把双刃剑。本综述旨在为LLPS、SGs和ndd的生物学和病理学提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stress granules: emerging players in neurodegenerative diseases.

Stress granules (SGs) are membraneless organelles formed in the cellular cytoplasm under stressful conditions through liquid-liquid phase separation (LLPS). SG assembly can be both dependent and independent of the eIF2α pathway, whereas cellular protein quality control systems mediate SG disassembly. Chaperones and specific domains of RNA-binding proteins strongly contribute to the regulation SG dynamics. Chronic stress, arising in association with aging, may promote persistent SGs that are difficult to disassemble, thereby acting as a potential pathological nidus for protein aggregation in neurodegenerative diseases (NDDs). In this review, we discuss the dynamics of SGs and the factors involved with SG assembly and disassembly. We also highlight the relationship among LLPS, SGs, and the pathogenesis of different NDDs. More importantly, we summarize SG assembly-disassembly, which may be a double-edged sword in the pathophysiology of NDDs. This review aims to provide new insights into the biology and pathology of LLPS, SGs, and NDDs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational Neurodegeneration
Translational Neurodegeneration Neuroscience-Cognitive Neuroscience
CiteScore
19.50
自引率
0.80%
发文量
44
审稿时长
10 weeks
期刊介绍: Translational Neurodegeneration, an open-access, peer-reviewed journal, addresses all aspects of neurodegenerative diseases. It serves as a prominent platform for research, therapeutics, and education, fostering discussions and insights across basic, translational, and clinical research domains. Covering Parkinson's disease, Alzheimer's disease, and other neurodegenerative conditions, it welcomes contributions on epidemiology, pathogenesis, diagnosis, prevention, drug development, rehabilitation, and drug delivery. Scientists, clinicians, and physician-scientists are encouraged to share their work in this specialized journal tailored to their fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信