使用两件分布的基于危险的混合模型。

IF 1.2 4区 数学
Worku Biyadgie Ewnetu, Irène Gijbels, Anneleen Verhasselt
{"title":"使用两件分布的基于危险的混合模型。","authors":"Worku Biyadgie Ewnetu, Irène Gijbels, Anneleen Verhasselt","doi":"10.1515/ijb-2023-0153","DOIUrl":null,"url":null,"abstract":"<p><p>Cox proportional hazards model is widely used to study the relationship between the survival time of an event and covariates. Its primary objective is parameter estimation assuming a constant relative hazard throughout the entire follow-up time. The baseline hazard is thus treated as a nuisance parameter. However, if the interest is to predict possible outcomes like specific quantiles of the distribution (e.g. median survival time), survival and hazard functions, it may be more convenient to use a parametric baseline distribution. Such a parametric model should however be flexible enough to allow for various shapes of e.g. the hazard function. In this paper we propose flexible hazard-based models for right censored data using a large class of two-piece asymmetric baseline distributions. The effect of covariates is characterized through time-scale changes on hazard progression and on the relative hazard ratio; and can take three possible functional forms: parametric, semi-parametric (partly linear) and non-parametric. In the first case, the usual full likelihood estimation method is applied. In the semi-parametric and non-parametric settings a general profile (local) likelihood estimation approach is proposed. An extensive simulation study investigates the finite-sample performances of the proposed method. Its use in data analysis is illustrated in real data examples.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid hazard-based model using two-piece distributions.\",\"authors\":\"Worku Biyadgie Ewnetu, Irène Gijbels, Anneleen Verhasselt\",\"doi\":\"10.1515/ijb-2023-0153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cox proportional hazards model is widely used to study the relationship between the survival time of an event and covariates. Its primary objective is parameter estimation assuming a constant relative hazard throughout the entire follow-up time. The baseline hazard is thus treated as a nuisance parameter. However, if the interest is to predict possible outcomes like specific quantiles of the distribution (e.g. median survival time), survival and hazard functions, it may be more convenient to use a parametric baseline distribution. Such a parametric model should however be flexible enough to allow for various shapes of e.g. the hazard function. In this paper we propose flexible hazard-based models for right censored data using a large class of two-piece asymmetric baseline distributions. The effect of covariates is characterized through time-scale changes on hazard progression and on the relative hazard ratio; and can take three possible functional forms: parametric, semi-parametric (partly linear) and non-parametric. In the first case, the usual full likelihood estimation method is applied. In the semi-parametric and non-parametric settings a general profile (local) likelihood estimation approach is proposed. An extensive simulation study investigates the finite-sample performances of the proposed method. Its use in data analysis is illustrated in real data examples.</p>\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2023-0153\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0153","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Cox比例风险模型被广泛用于研究事件生存时间与协变量之间的关系。其主要目标是在整个随访时间内假设一个恒定的相对危险度的参数估计。因此,基线危险被视为有害参数。然而,如果兴趣是预测可能的结果,如分布的特定分位数(例如中位生存时间),生存和风险函数,则使用参数基线分布可能更方便。然而,这种参数化模型应该足够灵活,以允许各种形状,例如危险函数。在本文中,我们提出了灵活的基于风险的模型右截尾数据使用大类两件不对称基线分布。协变量的影响表现为时间尺度变化对危险进展和相对危险比的影响;它可以有三种可能的函数形式:参数、半参数(部分线性)和非参数。在第一种情况下,采用通常的全似然估计方法。在半参数和非参数条件下,提出了一种通用的轮廓(局部)似然估计方法。广泛的仿真研究探讨了该方法的有限样本性能。通过实际数据实例说明了它在数据分析中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid hazard-based model using two-piece distributions.

Cox proportional hazards model is widely used to study the relationship between the survival time of an event and covariates. Its primary objective is parameter estimation assuming a constant relative hazard throughout the entire follow-up time. The baseline hazard is thus treated as a nuisance parameter. However, if the interest is to predict possible outcomes like specific quantiles of the distribution (e.g. median survival time), survival and hazard functions, it may be more convenient to use a parametric baseline distribution. Such a parametric model should however be flexible enough to allow for various shapes of e.g. the hazard function. In this paper we propose flexible hazard-based models for right censored data using a large class of two-piece asymmetric baseline distributions. The effect of covariates is characterized through time-scale changes on hazard progression and on the relative hazard ratio; and can take three possible functional forms: parametric, semi-parametric (partly linear) and non-parametric. In the first case, the usual full likelihood estimation method is applied. In the semi-parametric and non-parametric settings a general profile (local) likelihood estimation approach is proposed. An extensive simulation study investigates the finite-sample performances of the proposed method. Its use in data analysis is illustrated in real data examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biostatistics
International Journal of Biostatistics Mathematics-Statistics and Probability
CiteScore
2.30
自引率
8.30%
发文量
28
期刊介绍: The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信