{"title":"使用两件分布的基于危险的混合模型。","authors":"Worku Biyadgie Ewnetu, Irène Gijbels, Anneleen Verhasselt","doi":"10.1515/ijb-2023-0153","DOIUrl":null,"url":null,"abstract":"<p><p>Cox proportional hazards model is widely used to study the relationship between the survival time of an event and covariates. Its primary objective is parameter estimation assuming a constant relative hazard throughout the entire follow-up time. The baseline hazard is thus treated as a nuisance parameter. However, if the interest is to predict possible outcomes like specific quantiles of the distribution (e.g. median survival time), survival and hazard functions, it may be more convenient to use a parametric baseline distribution. Such a parametric model should however be flexible enough to allow for various shapes of e.g. the hazard function. In this paper we propose flexible hazard-based models for right censored data using a large class of two-piece asymmetric baseline distributions. The effect of covariates is characterized through time-scale changes on hazard progression and on the relative hazard ratio; and can take three possible functional forms: parametric, semi-parametric (partly linear) and non-parametric. In the first case, the usual full likelihood estimation method is applied. In the semi-parametric and non-parametric settings a general profile (local) likelihood estimation approach is proposed. An extensive simulation study investigates the finite-sample performances of the proposed method. Its use in data analysis is illustrated in real data examples.</p>","PeriodicalId":50333,"journal":{"name":"International Journal of Biostatistics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid hazard-based model using two-piece distributions.\",\"authors\":\"Worku Biyadgie Ewnetu, Irène Gijbels, Anneleen Verhasselt\",\"doi\":\"10.1515/ijb-2023-0153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cox proportional hazards model is widely used to study the relationship between the survival time of an event and covariates. Its primary objective is parameter estimation assuming a constant relative hazard throughout the entire follow-up time. The baseline hazard is thus treated as a nuisance parameter. However, if the interest is to predict possible outcomes like specific quantiles of the distribution (e.g. median survival time), survival and hazard functions, it may be more convenient to use a parametric baseline distribution. Such a parametric model should however be flexible enough to allow for various shapes of e.g. the hazard function. In this paper we propose flexible hazard-based models for right censored data using a large class of two-piece asymmetric baseline distributions. The effect of covariates is characterized through time-scale changes on hazard progression and on the relative hazard ratio; and can take three possible functional forms: parametric, semi-parametric (partly linear) and non-parametric. In the first case, the usual full likelihood estimation method is applied. In the semi-parametric and non-parametric settings a general profile (local) likelihood estimation approach is proposed. An extensive simulation study investigates the finite-sample performances of the proposed method. Its use in data analysis is illustrated in real data examples.</p>\",\"PeriodicalId\":50333,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2023-0153\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2023-0153","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A hybrid hazard-based model using two-piece distributions.
Cox proportional hazards model is widely used to study the relationship between the survival time of an event and covariates. Its primary objective is parameter estimation assuming a constant relative hazard throughout the entire follow-up time. The baseline hazard is thus treated as a nuisance parameter. However, if the interest is to predict possible outcomes like specific quantiles of the distribution (e.g. median survival time), survival and hazard functions, it may be more convenient to use a parametric baseline distribution. Such a parametric model should however be flexible enough to allow for various shapes of e.g. the hazard function. In this paper we propose flexible hazard-based models for right censored data using a large class of two-piece asymmetric baseline distributions. The effect of covariates is characterized through time-scale changes on hazard progression and on the relative hazard ratio; and can take three possible functional forms: parametric, semi-parametric (partly linear) and non-parametric. In the first case, the usual full likelihood estimation method is applied. In the semi-parametric and non-parametric settings a general profile (local) likelihood estimation approach is proposed. An extensive simulation study investigates the finite-sample performances of the proposed method. Its use in data analysis is illustrated in real data examples.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.