{"title":"声射质谱法:个性化医疗的潜力。","authors":"Chang Liu","doi":"10.1080/14789450.2025.2491356","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The emergence of personalized medicine (PM) has shifted the focus of healthcare from the traditional 'one-size-fits-all' approach to strategies tailored to individual patients, accounting for genetic, environmental, and lifestyle factors. Acoustic ejection mass spectrometry (AEMS) is a novel technology that offers a robust and scalable platform for high-throughput MS readout. AEMS achieves analytical speeds of one sample per second while maintaining high data quality, broad compound coverage, and minimal sample preparation, making it an invaluable tool for PM.</p><p><strong>Areas covered: </strong>This article explores the potential of AEMS in critical PM applications, including therapeutic drug monitoring (TDM), proteomics, metabolomics, and mass spectrometry imaging. AEMS simplifies conventional workflows by minimizing sample preparation, enhancing automation compatibility, and enabling direct analysis of complex biological matrices.</p><p><strong>Expert opinion: </strong>Integrating AEMS with orthogonal separation techniques such as differential mobility spectrometry (DMS) further addresses challenges in isomer discrimination, expanding the platform's analytical capabilities. Additionally, the development of high-throughput data processing tools could further enable AEMS to accelerate the development of personalized medicine.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":"22 4","pages":"141-147"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic ejection mass spectrometry: the potential for personalized medicine.\",\"authors\":\"Chang Liu\",\"doi\":\"10.1080/14789450.2025.2491356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>The emergence of personalized medicine (PM) has shifted the focus of healthcare from the traditional 'one-size-fits-all' approach to strategies tailored to individual patients, accounting for genetic, environmental, and lifestyle factors. Acoustic ejection mass spectrometry (AEMS) is a novel technology that offers a robust and scalable platform for high-throughput MS readout. AEMS achieves analytical speeds of one sample per second while maintaining high data quality, broad compound coverage, and minimal sample preparation, making it an invaluable tool for PM.</p><p><strong>Areas covered: </strong>This article explores the potential of AEMS in critical PM applications, including therapeutic drug monitoring (TDM), proteomics, metabolomics, and mass spectrometry imaging. AEMS simplifies conventional workflows by minimizing sample preparation, enhancing automation compatibility, and enabling direct analysis of complex biological matrices.</p><p><strong>Expert opinion: </strong>Integrating AEMS with orthogonal separation techniques such as differential mobility spectrometry (DMS) further addresses challenges in isomer discrimination, expanding the platform's analytical capabilities. Additionally, the development of high-throughput data processing tools could further enable AEMS to accelerate the development of personalized medicine.</p>\",\"PeriodicalId\":50463,\"journal\":{\"name\":\"Expert Review of Proteomics\",\"volume\":\"22 4\",\"pages\":\"141-147\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Review of Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/14789450.2025.2491356\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2025.2491356","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Acoustic ejection mass spectrometry: the potential for personalized medicine.
Introduction: The emergence of personalized medicine (PM) has shifted the focus of healthcare from the traditional 'one-size-fits-all' approach to strategies tailored to individual patients, accounting for genetic, environmental, and lifestyle factors. Acoustic ejection mass spectrometry (AEMS) is a novel technology that offers a robust and scalable platform for high-throughput MS readout. AEMS achieves analytical speeds of one sample per second while maintaining high data quality, broad compound coverage, and minimal sample preparation, making it an invaluable tool for PM.
Areas covered: This article explores the potential of AEMS in critical PM applications, including therapeutic drug monitoring (TDM), proteomics, metabolomics, and mass spectrometry imaging. AEMS simplifies conventional workflows by minimizing sample preparation, enhancing automation compatibility, and enabling direct analysis of complex biological matrices.
Expert opinion: Integrating AEMS with orthogonal separation techniques such as differential mobility spectrometry (DMS) further addresses challenges in isomer discrimination, expanding the platform's analytical capabilities. Additionally, the development of high-throughput data processing tools could further enable AEMS to accelerate the development of personalized medicine.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.