{"title":"螺纹参数对种植体稳定性影响的生物力学评价:系统综述。","authors":"Masoud Arabbeiki, Mohammad Reza Niroomand","doi":"10.1007/s11517-025-03367-1","DOIUrl":null,"url":null,"abstract":"<p><p>The threads of dental implants are critical components that transfer occlusal loads to the surrounding bone. The appropriate size of thread parameters can influence the stability of the implant after implantation. Despite several research studies on the effectiveness of implant thread parameters, there is limited structured information available. This study aims to conduct a systematic review to evaluate the biomechanical effects of thread parameters, namely, thread depth, thread width, thread pitch, and thread angle on implant stability. A comprehensive literature review was conducted in PubMed/MEDLINE, Scopus, ScienceDirect, and Web of Science for research published in English in the last two decades according to the PRISMA protocols. The extracted data were organized in the following order: area, bone layers, bone type, implant design, implant material, failure criteria/unit, loading type, statistical analysis/optimization, experimental validation, convergence analysis, boundary conditions, parts of the Finite Element Model, studied variables, and main findings. The search yielded 580 records, with 39 studies meeting the selection criteria and being chosen for the review. All four thread parameters were found to affect the stress and strain distribution in cancellous and cortical bones. Thread pitch and depth are more important for implant primary stability as they are directly correlated with the functional surface area between the implant and bone. Moreover, thread pitch, depth, and width can increase the insertion torque, which is favorable for implant primary stability, especially in low-quality bones. The thread angle can also direct occlusal forces to the bone more smoothly to prevent bone overloading and destructive shear stresses, which cause bone resorption. This structured review provides valuable insights into the biomechanical effects of thread parameters on implant stability.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomechanical evaluation of the effects of thread parameters on dental implant stability: a systematic review.\",\"authors\":\"Masoud Arabbeiki, Mohammad Reza Niroomand\",\"doi\":\"10.1007/s11517-025-03367-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The threads of dental implants are critical components that transfer occlusal loads to the surrounding bone. The appropriate size of thread parameters can influence the stability of the implant after implantation. Despite several research studies on the effectiveness of implant thread parameters, there is limited structured information available. This study aims to conduct a systematic review to evaluate the biomechanical effects of thread parameters, namely, thread depth, thread width, thread pitch, and thread angle on implant stability. A comprehensive literature review was conducted in PubMed/MEDLINE, Scopus, ScienceDirect, and Web of Science for research published in English in the last two decades according to the PRISMA protocols. The extracted data were organized in the following order: area, bone layers, bone type, implant design, implant material, failure criteria/unit, loading type, statistical analysis/optimization, experimental validation, convergence analysis, boundary conditions, parts of the Finite Element Model, studied variables, and main findings. The search yielded 580 records, with 39 studies meeting the selection criteria and being chosen for the review. All four thread parameters were found to affect the stress and strain distribution in cancellous and cortical bones. Thread pitch and depth are more important for implant primary stability as they are directly correlated with the functional surface area between the implant and bone. Moreover, thread pitch, depth, and width can increase the insertion torque, which is favorable for implant primary stability, especially in low-quality bones. The thread angle can also direct occlusal forces to the bone more smoothly to prevent bone overloading and destructive shear stresses, which cause bone resorption. This structured review provides valuable insights into the biomechanical effects of thread parameters on implant stability.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03367-1\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03367-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
牙种植体的螺纹是将咬合负荷转移到周围骨的关键部件。合适的螺纹参数大小会影响种植体植入后的稳定性。尽管对植入物螺纹参数的有效性进行了一些研究,但现有的结构化信息有限。本研究旨在系统评价螺纹参数(即螺纹深度、螺纹宽度、螺纹节距和螺纹角度)对种植体稳定性的生物力学影响。根据PRISMA协议,在PubMed/MEDLINE、Scopus、ScienceDirect和Web of Science上对过去20年发表的英文研究进行了全面的文献综述。提取的数据按面积、骨层、骨类型、种植体设计、种植体材料、失效准则/单元、加载类型、统计分析/优化、实验验证、收敛分析、边界条件、有限元模型部分、研究变量和主要发现进行整理。搜索产生了580条记录,其中39项研究符合选择标准并被选中进行审查。四种螺纹参数均影响松质骨和皮质骨的应力应变分布。螺纹间距和深度对种植体的初级稳定性更为重要,因为它们与种植体与骨之间的功能表面积直接相关。此外,螺纹间距、深度和宽度可以增加插入扭矩,这有利于种植体的初级稳定性,特别是在低质量骨中。螺纹角度还可以更顺利地将咬合力引导到骨骼上,以防止骨骼过载和破坏性剪切应力,从而导致骨吸收。这篇结构化的综述为螺纹参数对种植体稳定性的生物力学影响提供了有价值的见解。
Biomechanical evaluation of the effects of thread parameters on dental implant stability: a systematic review.
The threads of dental implants are critical components that transfer occlusal loads to the surrounding bone. The appropriate size of thread parameters can influence the stability of the implant after implantation. Despite several research studies on the effectiveness of implant thread parameters, there is limited structured information available. This study aims to conduct a systematic review to evaluate the biomechanical effects of thread parameters, namely, thread depth, thread width, thread pitch, and thread angle on implant stability. A comprehensive literature review was conducted in PubMed/MEDLINE, Scopus, ScienceDirect, and Web of Science for research published in English in the last two decades according to the PRISMA protocols. The extracted data were organized in the following order: area, bone layers, bone type, implant design, implant material, failure criteria/unit, loading type, statistical analysis/optimization, experimental validation, convergence analysis, boundary conditions, parts of the Finite Element Model, studied variables, and main findings. The search yielded 580 records, with 39 studies meeting the selection criteria and being chosen for the review. All four thread parameters were found to affect the stress and strain distribution in cancellous and cortical bones. Thread pitch and depth are more important for implant primary stability as they are directly correlated with the functional surface area between the implant and bone. Moreover, thread pitch, depth, and width can increase the insertion torque, which is favorable for implant primary stability, especially in low-quality bones. The thread angle can also direct occlusal forces to the bone more smoothly to prevent bone overloading and destructive shear stresses, which cause bone resorption. This structured review provides valuable insights into the biomechanical effects of thread parameters on implant stability.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).