{"title":"量子计算分析:推进药物代谢研究和药物递送设计。","authors":"Dilpreet Singh","doi":"10.2174/0118723128358210250219103853","DOIUrl":null,"url":null,"abstract":"<p><p>Quantum computing is poised to advance drug metabolism studies and drug delivery system design by providing unparalleled precision in simulating molecular interactions and optimizing therapeutic strategies. In drug metabolism, quantum algorithms allow for the accurate modeling of complex enzyme dynamics, such as those involving cytochrome P450 enzymes, which play a pivotal role in drug biotransformation. These simulations offer insights into metabolic pathways, helping predict drug efficacy, potential toxicities, and interactions with other compounds. Additionally, quantum computing is transforming drug delivery system design by enhancing the development of nanocarriers, optimizing their targeting and release profiles, and minimizing off-target effects. Quantum models enable more efficient design of nanoparticles, liposomes, and other carriers by simulating their interactions with biological environments at the atomic level. Together, these innovations enable faster, more personalized drug development, reducing the need for extensive testing and offering a path toward safer, more effective treatments for complex diseases.</p>","PeriodicalId":72844,"journal":{"name":"Drug metabolism and bioanalysis letters","volume":"17 3","pages":"99-103"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Computing Assays: Advancing Drug Metabolism Studies and Drug Delivery Design.\",\"authors\":\"Dilpreet Singh\",\"doi\":\"10.2174/0118723128358210250219103853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantum computing is poised to advance drug metabolism studies and drug delivery system design by providing unparalleled precision in simulating molecular interactions and optimizing therapeutic strategies. In drug metabolism, quantum algorithms allow for the accurate modeling of complex enzyme dynamics, such as those involving cytochrome P450 enzymes, which play a pivotal role in drug biotransformation. These simulations offer insights into metabolic pathways, helping predict drug efficacy, potential toxicities, and interactions with other compounds. Additionally, quantum computing is transforming drug delivery system design by enhancing the development of nanocarriers, optimizing their targeting and release profiles, and minimizing off-target effects. Quantum models enable more efficient design of nanoparticles, liposomes, and other carriers by simulating their interactions with biological environments at the atomic level. Together, these innovations enable faster, more personalized drug development, reducing the need for extensive testing and offering a path toward safer, more effective treatments for complex diseases.</p>\",\"PeriodicalId\":72844,\"journal\":{\"name\":\"Drug metabolism and bioanalysis letters\",\"volume\":\"17 3\",\"pages\":\"99-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug metabolism and bioanalysis letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118723128358210250219103853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug metabolism and bioanalysis letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118723128358210250219103853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum Computing Assays: Advancing Drug Metabolism Studies and Drug Delivery Design.
Quantum computing is poised to advance drug metabolism studies and drug delivery system design by providing unparalleled precision in simulating molecular interactions and optimizing therapeutic strategies. In drug metabolism, quantum algorithms allow for the accurate modeling of complex enzyme dynamics, such as those involving cytochrome P450 enzymes, which play a pivotal role in drug biotransformation. These simulations offer insights into metabolic pathways, helping predict drug efficacy, potential toxicities, and interactions with other compounds. Additionally, quantum computing is transforming drug delivery system design by enhancing the development of nanocarriers, optimizing their targeting and release profiles, and minimizing off-target effects. Quantum models enable more efficient design of nanoparticles, liposomes, and other carriers by simulating their interactions with biological environments at the atomic level. Together, these innovations enable faster, more personalized drug development, reducing the need for extensive testing and offering a path toward safer, more effective treatments for complex diseases.