Qingtong Zhou, Fenghui Zhao, Yao Zhang, Dehua Yang, Ming-Wei Wang
{"title":"GLP-1R信号传导的结构药理学和机制。","authors":"Qingtong Zhou, Fenghui Zhao, Yao Zhang, Dehua Yang, Ming-Wei Wang","doi":"10.1016/j.tips.2025.03.003","DOIUrl":null,"url":null,"abstract":"<p><p>Glucagon-like peptide-1 receptor (GLP-1R), a class B1 G protein-coupled receptor, plays critical roles in glucose homeostasis. Recent structural pharmacology studies using cryogenic electron microscopy, X-ray crystallography, mass spectrometry, and functional analyses, have provided valuable insights into its activation by endogenous hormones and mono- or dual agonists like semaglutide and tirzepatide, highly effective in treating type 2 diabetes and obesity. They highlight significant conformational changes in the extracellular and transmembrane domains of GLP-1R that drive receptor activation and downstream signal transduction. Additionally, allosteric modulators, supported by emerging structural information, show great promises as an alternative strategy. Future research investigating unexplored effector interactions, biased signaling, weight rebound mechanisms, and personalized therapy strategies will be critical for developing better therapeutic agents targeting GLP-1R.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":"46 5","pages":"422-436"},"PeriodicalIF":19.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural pharmacology and mechanisms of GLP-1R signaling.\",\"authors\":\"Qingtong Zhou, Fenghui Zhao, Yao Zhang, Dehua Yang, Ming-Wei Wang\",\"doi\":\"10.1016/j.tips.2025.03.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucagon-like peptide-1 receptor (GLP-1R), a class B1 G protein-coupled receptor, plays critical roles in glucose homeostasis. Recent structural pharmacology studies using cryogenic electron microscopy, X-ray crystallography, mass spectrometry, and functional analyses, have provided valuable insights into its activation by endogenous hormones and mono- or dual agonists like semaglutide and tirzepatide, highly effective in treating type 2 diabetes and obesity. They highlight significant conformational changes in the extracellular and transmembrane domains of GLP-1R that drive receptor activation and downstream signal transduction. Additionally, allosteric modulators, supported by emerging structural information, show great promises as an alternative strategy. Future research investigating unexplored effector interactions, biased signaling, weight rebound mechanisms, and personalized therapy strategies will be critical for developing better therapeutic agents targeting GLP-1R.</p>\",\"PeriodicalId\":23250,\"journal\":{\"name\":\"Trends in pharmacological sciences\",\"volume\":\"46 5\",\"pages\":\"422-436\"},\"PeriodicalIF\":19.9000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in pharmacological sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tips.2025.03.003\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tips.2025.03.003","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Structural pharmacology and mechanisms of GLP-1R signaling.
Glucagon-like peptide-1 receptor (GLP-1R), a class B1 G protein-coupled receptor, plays critical roles in glucose homeostasis. Recent structural pharmacology studies using cryogenic electron microscopy, X-ray crystallography, mass spectrometry, and functional analyses, have provided valuable insights into its activation by endogenous hormones and mono- or dual agonists like semaglutide and tirzepatide, highly effective in treating type 2 diabetes and obesity. They highlight significant conformational changes in the extracellular and transmembrane domains of GLP-1R that drive receptor activation and downstream signal transduction. Additionally, allosteric modulators, supported by emerging structural information, show great promises as an alternative strategy. Future research investigating unexplored effector interactions, biased signaling, weight rebound mechanisms, and personalized therapy strategies will be critical for developing better therapeutic agents targeting GLP-1R.
期刊介绍:
Trends in Pharmacological Sciences (TIPS) is a monthly peer-reviewed reviews journal that focuses on a wide range of topics in pharmacology, pharmacy, pharmaceutics, and toxicology. Launched in 1979, TIPS publishes concise articles discussing the latest advancements in pharmacology and therapeutics research.
The journal encourages submissions that align with its core themes while also being open to articles on the biopharma regulatory landscape, science policy and regulation, and bioethics.
Each issue of TIPS provides a platform for experts to share their insights and perspectives on the most exciting developments in the field. Through rigorous peer review, the journal ensures the quality and reliability of published articles.
Authors are invited to contribute articles that contribute to the understanding of pharmacology and its applications in various domains. Whether it's exploring innovative drug therapies or discussing the ethical considerations of pharmaceutical research, TIPS provides a valuable resource for researchers, practitioners, and policymakers in the pharmacological sciences.