热带方案理论中的射影超曲面I: Macaulay理想。

IF 1.2 3区 数学 Q1 MATHEMATICS
Research in the Mathematical Sciences Pub Date : 2025-01-01 Epub Date: 2025-04-25 DOI:10.1007/s40687-025-00517-7
Alex Fink, Jeffrey Giansiracusa, Noah Giansiracusa, Joshua Mundinger
{"title":"热带方案理论中的射影超曲面I: Macaulay理想。","authors":"Alex Fink, Jeffrey Giansiracusa, Noah Giansiracusa, Joshua Mundinger","doi":"10.1007/s40687-025-00517-7","DOIUrl":null,"url":null,"abstract":"<p><p>A \"tropical ideal\" is an ideal in the idempotent semiring of tropical polynomials that is also, degree by degree, a tropical linear space. We introduce a construction based on transversal matroids that canonically extends any principal ideal to a tropical ideal. We call this the Macaulay tropical ideal. It has a universal property: any other extension of the given principal ideal to a tropical ideal with the expected Hilbert function is a weak image of the Macaulay tropical ideal. For each <math><mrow><mi>n</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> and <math><mrow><mi>d</mi> <mo>≥</mo> <mn>1</mn></mrow> </math> , our construction yields a non-realizable degree <i>d</i> hypersurface scheme in <math> <msup><mrow><mi>P</mi></mrow> <mi>n</mi></msup> </math> . Maclagan-Rincón produced a non-realizable line in <math> <msup><mrow><mi>P</mi></mrow> <mi>n</mi></msup> </math> for each <i>n</i>, and for <math><mrow><mo>(</mo> <mi>d</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo></mrow> </math> the two constructions agree. An appendix by Mundinger compares the Macaulay construction with another method for canonically extending ideals to tropical ideals.</p>","PeriodicalId":48561,"journal":{"name":"Research in the Mathematical Sciences","volume":"12 2","pages":"30"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031988/pdf/","citationCount":"0","resultStr":"{\"title\":\"Projective hypersurfaces in tropical scheme theory I: the Macaulay ideal.\",\"authors\":\"Alex Fink, Jeffrey Giansiracusa, Noah Giansiracusa, Joshua Mundinger\",\"doi\":\"10.1007/s40687-025-00517-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A \\\"tropical ideal\\\" is an ideal in the idempotent semiring of tropical polynomials that is also, degree by degree, a tropical linear space. We introduce a construction based on transversal matroids that canonically extends any principal ideal to a tropical ideal. We call this the Macaulay tropical ideal. It has a universal property: any other extension of the given principal ideal to a tropical ideal with the expected Hilbert function is a weak image of the Macaulay tropical ideal. For each <math><mrow><mi>n</mi> <mo>≥</mo> <mn>2</mn></mrow> </math> and <math><mrow><mi>d</mi> <mo>≥</mo> <mn>1</mn></mrow> </math> , our construction yields a non-realizable degree <i>d</i> hypersurface scheme in <math> <msup><mrow><mi>P</mi></mrow> <mi>n</mi></msup> </math> . Maclagan-Rincón produced a non-realizable line in <math> <msup><mrow><mi>P</mi></mrow> <mi>n</mi></msup> </math> for each <i>n</i>, and for <math><mrow><mo>(</mo> <mi>d</mi> <mo>,</mo> <mi>n</mi> <mo>)</mo> <mo>=</mo> <mo>(</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>)</mo></mrow> </math> the two constructions agree. An appendix by Mundinger compares the Macaulay construction with another method for canonically extending ideals to tropical ideals.</p>\",\"PeriodicalId\":48561,\"journal\":{\"name\":\"Research in the Mathematical Sciences\",\"volume\":\"12 2\",\"pages\":\"30\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031988/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in the Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-025-00517-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in the Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-025-00517-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

“热带理想”是热带多项式的幂等半环中的理想,它也是一个热带线性空间。我们介绍了一个基于横拟阵的构造,它将任何主理想扩展到热带理想。我们称之为麦考利热带理想。它有一个普适性:将给定的主理想扩展到带期望希尔伯特函数的热带理想是麦考利热带理想的弱像。对于每个n≥2和d≥1,我们的构造在P n中得到一个不可实现的d次超曲面格式。Maclagan-Rincón为每个n生成了pn中不可实现的行,对于(d, n) =(1,2),这两个结构一致。Mundinger的附录将Macaulay结构与另一种将理想扩展到热带理想的方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projective hypersurfaces in tropical scheme theory I: the Macaulay ideal.

A "tropical ideal" is an ideal in the idempotent semiring of tropical polynomials that is also, degree by degree, a tropical linear space. We introduce a construction based on transversal matroids that canonically extends any principal ideal to a tropical ideal. We call this the Macaulay tropical ideal. It has a universal property: any other extension of the given principal ideal to a tropical ideal with the expected Hilbert function is a weak image of the Macaulay tropical ideal. For each n 2 and d 1 , our construction yields a non-realizable degree d hypersurface scheme in P n . Maclagan-Rincón produced a non-realizable line in P n for each n, and for ( d , n ) = ( 1 , 2 ) the two constructions agree. An appendix by Mundinger compares the Macaulay construction with another method for canonically extending ideals to tropical ideals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in the Mathematical Sciences
Research in the Mathematical Sciences Mathematics-Computational Mathematics
CiteScore
2.00
自引率
8.30%
发文量
58
期刊介绍: Research in the Mathematical Sciences is an international, peer-reviewed hybrid journal covering the full scope of Theoretical Mathematics, Applied Mathematics, and Theoretical Computer Science. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to the research areas of both theoretical and applied mathematics and theoretical computer science. This journal is an efficient enterprise where the editors play a central role in soliciting the best research papers, and where editorial decisions are reached in a timely fashion. Research in the Mathematical Sciences does not have a length restriction and encourages the submission of longer articles in which more complex and detailed analysis and proofing of theorems is required. It also publishes shorter research communications (Letters) covering nascent research in some of the hottest areas of mathematical research. This journal will publish the highest quality papers in all of the traditional areas of applied and theoretical areas of mathematics and computer science, and it will actively seek to publish seminal papers in the most emerging and interdisciplinary areas in all of the mathematical sciences. Research in the Mathematical Sciences wishes to lead the way by promoting the highest quality research of this type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信