{"title":"资源呈现决定了酵母的遗传和表型适应。","authors":"Neetika Ahlawat, Anjali Mahilkar, Supreet Saini","doi":"10.1186/s12862-025-02361-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Environments shape adaptive trajectories of populations, often leading to adaptive parallelism in identical, and divergence in different environments. However, how does the likelihood of these possibilities change with minute changes in the environment remain unclear.</p><p><strong>Results: </strong>In this study, we evolved Saccharomyces cerevisiae in environments which differed only in the manner in which the sugar source is presented to the population. In one set of populations, carbon was presented as a mixture of glucose-galactose, and in the other, as melibiose, a glucose-galactose disaccharide. Since the two environments differed in how the two monosaccharides are packaged, we call these environments 'synonymous'. Our results show that even subtle environmental differences can lead to differing phenotypic responses between the two sets of evolved populations. However, despite different adaptive responses, pleiotropic effects of adaptation are largely predictable. We also show that distinct genomic targets of adaptation between the two sets of evolved populations are functionally convergent.</p><p><strong>Conclusion: </strong>This study highlights how subtle environmental differences dictate phenotypic and genetic adaptation of populations. Additionally, these results also suggest the predictive potential of ancestor's fitness in understanding pleiotropic responses. Our work underscores the importance of studying more such environments to understand the generality of adaptive responses in populations.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"25 1","pages":"33"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Resource presentation dictates genetic and phenotypic adaptation in yeast.\",\"authors\":\"Neetika Ahlawat, Anjali Mahilkar, Supreet Saini\",\"doi\":\"10.1186/s12862-025-02361-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Environments shape adaptive trajectories of populations, often leading to adaptive parallelism in identical, and divergence in different environments. However, how does the likelihood of these possibilities change with minute changes in the environment remain unclear.</p><p><strong>Results: </strong>In this study, we evolved Saccharomyces cerevisiae in environments which differed only in the manner in which the sugar source is presented to the population. In one set of populations, carbon was presented as a mixture of glucose-galactose, and in the other, as melibiose, a glucose-galactose disaccharide. Since the two environments differed in how the two monosaccharides are packaged, we call these environments 'synonymous'. Our results show that even subtle environmental differences can lead to differing phenotypic responses between the two sets of evolved populations. However, despite different adaptive responses, pleiotropic effects of adaptation are largely predictable. We also show that distinct genomic targets of adaptation between the two sets of evolved populations are functionally convergent.</p><p><strong>Conclusion: </strong>This study highlights how subtle environmental differences dictate phenotypic and genetic adaptation of populations. Additionally, these results also suggest the predictive potential of ancestor's fitness in understanding pleiotropic responses. Our work underscores the importance of studying more such environments to understand the generality of adaptive responses in populations.</p>\",\"PeriodicalId\":93910,\"journal\":{\"name\":\"BMC ecology and evolution\",\"volume\":\"25 1\",\"pages\":\"33\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11998346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC ecology and evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s12862-025-02361-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-025-02361-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Resource presentation dictates genetic and phenotypic adaptation in yeast.
Background: Environments shape adaptive trajectories of populations, often leading to adaptive parallelism in identical, and divergence in different environments. However, how does the likelihood of these possibilities change with minute changes in the environment remain unclear.
Results: In this study, we evolved Saccharomyces cerevisiae in environments which differed only in the manner in which the sugar source is presented to the population. In one set of populations, carbon was presented as a mixture of glucose-galactose, and in the other, as melibiose, a glucose-galactose disaccharide. Since the two environments differed in how the two monosaccharides are packaged, we call these environments 'synonymous'. Our results show that even subtle environmental differences can lead to differing phenotypic responses between the two sets of evolved populations. However, despite different adaptive responses, pleiotropic effects of adaptation are largely predictable. We also show that distinct genomic targets of adaptation between the two sets of evolved populations are functionally convergent.
Conclusion: This study highlights how subtle environmental differences dictate phenotypic and genetic adaptation of populations. Additionally, these results also suggest the predictive potential of ancestor's fitness in understanding pleiotropic responses. Our work underscores the importance of studying more such environments to understand the generality of adaptive responses in populations.