Xingzhe Liu, Yuzhen Cui, Jie Gong, Xinhui Yu, Yan Cui, Yanhua Xuan
{"title":"SETD5通过m6a介导的PKM2稳定在非小细胞肺癌中促进干性并抑制铁下垂。","authors":"Xingzhe Liu, Yuzhen Cui, Jie Gong, Xinhui Yu, Yan Cui, Yanhua Xuan","doi":"10.1038/s41388-025-03426-9","DOIUrl":null,"url":null,"abstract":"SETD5, an atypical member of the histone lysine methyltransferase family known for its association with cancer stemness, is a significant predictor of unfavorable survival outcomes in non-small cell lung cancer (NSCLC). However, the function of SETD5 in NSCLC stemness remains unclear, and whether it is an active H3K36me3 is controversial. Consequently, further investigation is required to clarify the pivotal role of SETD5 in NSCLC stemness and its related mechanism. Thus, this study employed the NSCLC tissue microarray and bioinformatics tools to analyze SETD5 expression and determine its effect on stemness and investigated the role of SETD5 in the metastasis of NSCLC using in vitro and in vivo analyses. The findings indicated high SETD5 expression in embryonic and NSCLC tissues, which was related to the pathological tumor stage, lymph node metastasis, and clinical stage, indicating that SETD5 could be used as a biomarker and prognostic factor in NSCLC. In addition, we found that SETD5 can promote glycolysis, thereby inhibiting ferroptosis and promoting the stemness of NSCLC, causing tumor metastasis and adverse prognosis in patients. In terms of mechanism, SETD5 as H3K36me3 facilitates the m6A modification of METTL14 and the recruitment of YTHDF1 and mediates PKM2 nuclear translocation and phosphorylation of p-PKM2 Tyr105, regulating GPX4 mediated ferroptosis resistance and SOX9 mediated stemness in NSCLC. The findings emphasize that SETD5 may serve as a promising indicator of stemness in NSCLC, which can help develop therapeutic targets for NSCLC and prognostic evaluation.","PeriodicalId":19524,"journal":{"name":"Oncogene","volume":"44 29","pages":"2474-2489"},"PeriodicalIF":7.3000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41388-025-03426-9.pdf","citationCount":"0","resultStr":"{\"title\":\"SETD5 facilitates stemness and represses ferroptosis via m6A-mediating PKM2 stabilization in non-small cell lung cancer\",\"authors\":\"Xingzhe Liu, Yuzhen Cui, Jie Gong, Xinhui Yu, Yan Cui, Yanhua Xuan\",\"doi\":\"10.1038/s41388-025-03426-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SETD5, an atypical member of the histone lysine methyltransferase family known for its association with cancer stemness, is a significant predictor of unfavorable survival outcomes in non-small cell lung cancer (NSCLC). However, the function of SETD5 in NSCLC stemness remains unclear, and whether it is an active H3K36me3 is controversial. Consequently, further investigation is required to clarify the pivotal role of SETD5 in NSCLC stemness and its related mechanism. Thus, this study employed the NSCLC tissue microarray and bioinformatics tools to analyze SETD5 expression and determine its effect on stemness and investigated the role of SETD5 in the metastasis of NSCLC using in vitro and in vivo analyses. The findings indicated high SETD5 expression in embryonic and NSCLC tissues, which was related to the pathological tumor stage, lymph node metastasis, and clinical stage, indicating that SETD5 could be used as a biomarker and prognostic factor in NSCLC. In addition, we found that SETD5 can promote glycolysis, thereby inhibiting ferroptosis and promoting the stemness of NSCLC, causing tumor metastasis and adverse prognosis in patients. In terms of mechanism, SETD5 as H3K36me3 facilitates the m6A modification of METTL14 and the recruitment of YTHDF1 and mediates PKM2 nuclear translocation and phosphorylation of p-PKM2 Tyr105, regulating GPX4 mediated ferroptosis resistance and SOX9 mediated stemness in NSCLC. The findings emphasize that SETD5 may serve as a promising indicator of stemness in NSCLC, which can help develop therapeutic targets for NSCLC and prognostic evaluation.\",\"PeriodicalId\":19524,\"journal\":{\"name\":\"Oncogene\",\"volume\":\"44 29\",\"pages\":\"2474-2489\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41388-025-03426-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oncogene\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41388-025-03426-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncogene","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41388-025-03426-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SETD5 facilitates stemness and represses ferroptosis via m6A-mediating PKM2 stabilization in non-small cell lung cancer
SETD5, an atypical member of the histone lysine methyltransferase family known for its association with cancer stemness, is a significant predictor of unfavorable survival outcomes in non-small cell lung cancer (NSCLC). However, the function of SETD5 in NSCLC stemness remains unclear, and whether it is an active H3K36me3 is controversial. Consequently, further investigation is required to clarify the pivotal role of SETD5 in NSCLC stemness and its related mechanism. Thus, this study employed the NSCLC tissue microarray and bioinformatics tools to analyze SETD5 expression and determine its effect on stemness and investigated the role of SETD5 in the metastasis of NSCLC using in vitro and in vivo analyses. The findings indicated high SETD5 expression in embryonic and NSCLC tissues, which was related to the pathological tumor stage, lymph node metastasis, and clinical stage, indicating that SETD5 could be used as a biomarker and prognostic factor in NSCLC. In addition, we found that SETD5 can promote glycolysis, thereby inhibiting ferroptosis and promoting the stemness of NSCLC, causing tumor metastasis and adverse prognosis in patients. In terms of mechanism, SETD5 as H3K36me3 facilitates the m6A modification of METTL14 and the recruitment of YTHDF1 and mediates PKM2 nuclear translocation and phosphorylation of p-PKM2 Tyr105, regulating GPX4 mediated ferroptosis resistance and SOX9 mediated stemness in NSCLC. The findings emphasize that SETD5 may serve as a promising indicator of stemness in NSCLC, which can help develop therapeutic targets for NSCLC and prognostic evaluation.
期刊介绍:
Oncogene is dedicated to advancing our understanding of cancer processes through the publication of exceptional research. The journal seeks to disseminate work that challenges conventional theories and contributes to establishing new paradigms in the etio-pathogenesis, diagnosis, treatment, or prevention of cancers. Emphasis is placed on research shedding light on processes driving metastatic spread and providing crucial insights into cancer biology beyond existing knowledge.
Areas covered include the cellular and molecular biology of cancer, resistance to cancer therapies, and the development of improved approaches to enhance survival. Oncogene spans the spectrum of cancer biology, from fundamental and theoretical work to translational, applied, and clinical research, including early and late Phase clinical trials, particularly those with biologic and translational endpoints.