Faeze Kachoueiyan, Niosha Yahyavi Kalkhoran, Anousha Yahyavi Kalkhoran, Ashishkumar Kyada, M M Rekha, Kamlesh Chaudhary, Amit Barwal, Fadhil Faez Sead, Kamal Kant Joshi
{"title":"丁酸盐:阿尔茨海默病肠-脑通讯的关键介质。","authors":"Faeze Kachoueiyan, Niosha Yahyavi Kalkhoran, Anousha Yahyavi Kalkhoran, Ashishkumar Kyada, M M Rekha, Kamlesh Chaudhary, Amit Barwal, Fadhil Faez Sead, Kamal Kant Joshi","doi":"10.1007/s11011-025-01617-7","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD), a prevalent neurodegenerative disorder, represents a significant global health challenge, characterized by cognitive decline and neuroinflammation. Recent investigations have highlighted the critical role of the gut-brain axis in the pathogenesis of AD, particularly focusing on the influence of short-chain fatty acids (SCFAs), metabolites produced by the gut microbiota through the fermentation of dietary fiber. Among SCFAs, butyrate has emerged as a crucial mediator, positively impacting various pathological processes associated with AD, including epigenetic regulation, neuroinflammation modulation, maintenance of the blood-brain barrier (BBB), enhanced intestinal integrity, regulation of brain metabolism, and interference with amyloid protein formation as well as tau protein hyperphosphorylation. Furthermore, distinctions in butyrate profile and microbial communities have been observed between AD patients and healthy individuals, underscoring the importance of gut microbiota in AD progression. This review summarizes the current understanding of the many functions of butyrate in reducing the consequences of AD and emphasizes the possibility of addressing the gut microbiota as a therapeutic approach to managing AD.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":"40 5","pages":"189"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Butyrate: a key mediator of gut-brain communication in Alzheimer's disease.\",\"authors\":\"Faeze Kachoueiyan, Niosha Yahyavi Kalkhoran, Anousha Yahyavi Kalkhoran, Ashishkumar Kyada, M M Rekha, Kamlesh Chaudhary, Amit Barwal, Fadhil Faez Sead, Kamal Kant Joshi\",\"doi\":\"10.1007/s11011-025-01617-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alzheimer's disease (AD), a prevalent neurodegenerative disorder, represents a significant global health challenge, characterized by cognitive decline and neuroinflammation. Recent investigations have highlighted the critical role of the gut-brain axis in the pathogenesis of AD, particularly focusing on the influence of short-chain fatty acids (SCFAs), metabolites produced by the gut microbiota through the fermentation of dietary fiber. Among SCFAs, butyrate has emerged as a crucial mediator, positively impacting various pathological processes associated with AD, including epigenetic regulation, neuroinflammation modulation, maintenance of the blood-brain barrier (BBB), enhanced intestinal integrity, regulation of brain metabolism, and interference with amyloid protein formation as well as tau protein hyperphosphorylation. Furthermore, distinctions in butyrate profile and microbial communities have been observed between AD patients and healthy individuals, underscoring the importance of gut microbiota in AD progression. This review summarizes the current understanding of the many functions of butyrate in reducing the consequences of AD and emphasizes the possibility of addressing the gut microbiota as a therapeutic approach to managing AD.</p>\",\"PeriodicalId\":18685,\"journal\":{\"name\":\"Metabolic brain disease\",\"volume\":\"40 5\",\"pages\":\"189\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic brain disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11011-025-01617-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-025-01617-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Butyrate: a key mediator of gut-brain communication in Alzheimer's disease.
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, represents a significant global health challenge, characterized by cognitive decline and neuroinflammation. Recent investigations have highlighted the critical role of the gut-brain axis in the pathogenesis of AD, particularly focusing on the influence of short-chain fatty acids (SCFAs), metabolites produced by the gut microbiota through the fermentation of dietary fiber. Among SCFAs, butyrate has emerged as a crucial mediator, positively impacting various pathological processes associated with AD, including epigenetic regulation, neuroinflammation modulation, maintenance of the blood-brain barrier (BBB), enhanced intestinal integrity, regulation of brain metabolism, and interference with amyloid protein formation as well as tau protein hyperphosphorylation. Furthermore, distinctions in butyrate profile and microbial communities have been observed between AD patients and healthy individuals, underscoring the importance of gut microbiota in AD progression. This review summarizes the current understanding of the many functions of butyrate in reducing the consequences of AD and emphasizes the possibility of addressing the gut microbiota as a therapeutic approach to managing AD.
期刊介绍:
Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.