小胶质外泌体在氯氮平治疗中的作用:对精神分裂症患者认知的影响。

IF 6.2
Kyle Hewitt, Xu-Feng Huang
{"title":"小胶质外泌体在氯氮平治疗中的作用:对精神分裂症患者认知的影响。","authors":"Kyle Hewitt, Xu-Feng Huang","doi":"10.1007/s11481-024-10160-8","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophrenia is a complex neuropsychiatric disorder characterized by a spectrum of symptoms including cognitive impairments and psychotic episodes. Clozapine, an atypical antipsychotic drug, is a widely recognised treatment option for patients with drug-resistant schizophrenia, due to it having the highest efficacy out of all the antipsychotic drugs. Despite its efficacy, clozapine's impact on cognition and brain structure in schizophrenia patients remains a subject of ongoing research and debate, with accumulating evidence indicating negative impacts on cognitive performance and changes in brain volume. Changes in the immune system are linked to variations in cognitive functioning in schizophrenia. Previous research has indicated that microglia, the primary innate immune cells of the brain, have been associated with decreased cognitive performance when dysfunctional. Evidence suggests that brain structure may mediate the observed relationship between microglia and cognition. Microglial exosomes, integral to neuroinflammation and cellular communication, could provide insight into the neurobiological mechanisms underpinning the effects of clozapine treatment. This review focuses on the proposition that alterations in microglial exosome composition, particularly miRNAs, are involved in mediating clozapine's diverse effects on cognition by influencing brain macrostructure. This review aims to highlight new directions for future research that could lead to more effective and targeted therapeutic approaches in the management of schizophrenia.</p>","PeriodicalId":73858,"journal":{"name":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","volume":"20 1","pages":"42"},"PeriodicalIF":6.2000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003456/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of Microglial Exosomes in Clozapine Treatment: Effect on Cognition in Schizophrenia.\",\"authors\":\"Kyle Hewitt, Xu-Feng Huang\",\"doi\":\"10.1007/s11481-024-10160-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Schizophrenia is a complex neuropsychiatric disorder characterized by a spectrum of symptoms including cognitive impairments and psychotic episodes. Clozapine, an atypical antipsychotic drug, is a widely recognised treatment option for patients with drug-resistant schizophrenia, due to it having the highest efficacy out of all the antipsychotic drugs. Despite its efficacy, clozapine's impact on cognition and brain structure in schizophrenia patients remains a subject of ongoing research and debate, with accumulating evidence indicating negative impacts on cognitive performance and changes in brain volume. Changes in the immune system are linked to variations in cognitive functioning in schizophrenia. Previous research has indicated that microglia, the primary innate immune cells of the brain, have been associated with decreased cognitive performance when dysfunctional. Evidence suggests that brain structure may mediate the observed relationship between microglia and cognition. Microglial exosomes, integral to neuroinflammation and cellular communication, could provide insight into the neurobiological mechanisms underpinning the effects of clozapine treatment. This review focuses on the proposition that alterations in microglial exosome composition, particularly miRNAs, are involved in mediating clozapine's diverse effects on cognition by influencing brain macrostructure. This review aims to highlight new directions for future research that could lead to more effective and targeted therapeutic approaches in the management of schizophrenia.</p>\",\"PeriodicalId\":73858,\"journal\":{\"name\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"volume\":\"20 1\",\"pages\":\"42\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003456/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11481-024-10160-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11481-024-10160-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精神分裂症是一种复杂的神经精神障碍,其特征是一系列症状,包括认知障碍和精神病发作。氯氮平是一种非典型抗精神病药物,由于其在所有抗精神病药物中疗效最高,因此被广泛认为是耐药精神分裂症患者的治疗选择。尽管氯氮平疗效显著,但其对精神分裂症患者认知和脑结构的影响仍是一个正在进行的研究和争论的主题,越来越多的证据表明氯氮平对认知表现和脑容量的变化有负面影响。免疫系统的变化与精神分裂症患者认知功能的变化有关。先前的研究表明,小胶质细胞是大脑的主要先天免疫细胞,当功能失调时,它与认知能力下降有关。有证据表明,大脑结构可能介导了观察到的小胶质细胞与认知之间的关系。小胶质外泌体是神经炎症和细胞通讯的组成部分,可以为支持氯氮平治疗效果的神经生物学机制提供见解。这篇综述的重点是小胶质外泌体组成的改变,特别是mirna的改变,通过影响大脑宏观结构参与了氯氮平对认知的多种作用。这篇综述旨在强调未来研究的新方向,这些方向可能导致精神分裂症管理中更有效和更有针对性的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Role of Microglial Exosomes in Clozapine Treatment: Effect on Cognition in Schizophrenia.

Schizophrenia is a complex neuropsychiatric disorder characterized by a spectrum of symptoms including cognitive impairments and psychotic episodes. Clozapine, an atypical antipsychotic drug, is a widely recognised treatment option for patients with drug-resistant schizophrenia, due to it having the highest efficacy out of all the antipsychotic drugs. Despite its efficacy, clozapine's impact on cognition and brain structure in schizophrenia patients remains a subject of ongoing research and debate, with accumulating evidence indicating negative impacts on cognitive performance and changes in brain volume. Changes in the immune system are linked to variations in cognitive functioning in schizophrenia. Previous research has indicated that microglia, the primary innate immune cells of the brain, have been associated with decreased cognitive performance when dysfunctional. Evidence suggests that brain structure may mediate the observed relationship between microglia and cognition. Microglial exosomes, integral to neuroinflammation and cellular communication, could provide insight into the neurobiological mechanisms underpinning the effects of clozapine treatment. This review focuses on the proposition that alterations in microglial exosome composition, particularly miRNAs, are involved in mediating clozapine's diverse effects on cognition by influencing brain macrostructure. This review aims to highlight new directions for future research that could lead to more effective and targeted therapeutic approaches in the management of schizophrenia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信