PyEvoCell: llm增强的单细胞轨迹分析仪表板。

Sachin Mathur, Mathieu Beauvais, Arnau Giribet, Nicolas Aragon Barrero, Chaorui-Tom Zhang, Towsif Rahman, Seqian Wang, Jeremy Huang, Nima Nouri, Andre Kurlovs, Ziv Bar-Joseph, Peyman Passban
{"title":"PyEvoCell: llm增强的单细胞轨迹分析仪表板。","authors":"Sachin Mathur, Mathieu Beauvais, Arnau Giribet, Nicolas Aragon Barrero, Chaorui-Tom Zhang, Towsif Rahman, Seqian Wang, Jeremy Huang, Nima Nouri, Andre Kurlovs, Ziv Bar-Joseph, Peyman Passban","doi":"10.1093/bioinformatics/btaf158","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Several methods have been developed for trajectory inference in single-cell studies. However, identifying relevant lineages among several cell types and interpreting the results of downstream analysis remains a challenging task that requires deep understanding of various cell type transitions and progression patterns. Therefore, there is a need for methods that can aid researchers in the analysis and interpretation of such trajectories.</p><p><strong>Results: </strong>We developed PyEvoCell, a dashboard for trajectory interpretation and analysis that is augmented by large language model (LLM) capabilities. PyEvoCell applies the LLM to the outputs of trajectory inference methods such as Monocle3, to suggest biologically relevant lineages. Once a lineage is defined, users can conduct differential expression and functional analyses which are also interpreted by the LLM. Finally, any hypothesis or claim derived from the analysis can be validated using the veracity filter, a feature enabled by the LLM, to confirm or reject claims by providing relevant PubMed citations.</p><p><strong>Availability and implementation: </strong>The software is available at https://github.com/Sanofi-Public/PyEvoCell. It contains installation instructions, user manual, demo datasets, as well as license conditions. https://doi.org/10.5281/zenodo.15114803.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":"41 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014098/pdf/","citationCount":"0","resultStr":"{\"title\":\"PyEvoCell: an LLM-augmented single-cell trajectory analysis dashboard.\",\"authors\":\"Sachin Mathur, Mathieu Beauvais, Arnau Giribet, Nicolas Aragon Barrero, Chaorui-Tom Zhang, Towsif Rahman, Seqian Wang, Jeremy Huang, Nima Nouri, Andre Kurlovs, Ziv Bar-Joseph, Peyman Passban\",\"doi\":\"10.1093/bioinformatics/btaf158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Several methods have been developed for trajectory inference in single-cell studies. However, identifying relevant lineages among several cell types and interpreting the results of downstream analysis remains a challenging task that requires deep understanding of various cell type transitions and progression patterns. Therefore, there is a need for methods that can aid researchers in the analysis and interpretation of such trajectories.</p><p><strong>Results: </strong>We developed PyEvoCell, a dashboard for trajectory interpretation and analysis that is augmented by large language model (LLM) capabilities. PyEvoCell applies the LLM to the outputs of trajectory inference methods such as Monocle3, to suggest biologically relevant lineages. Once a lineage is defined, users can conduct differential expression and functional analyses which are also interpreted by the LLM. Finally, any hypothesis or claim derived from the analysis can be validated using the veracity filter, a feature enabled by the LLM, to confirm or reject claims by providing relevant PubMed citations.</p><p><strong>Availability and implementation: </strong>The software is available at https://github.com/Sanofi-Public/PyEvoCell. It contains installation instructions, user manual, demo datasets, as well as license conditions. https://doi.org/10.5281/zenodo.15114803.</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\"41 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014098/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btaf158\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:在单细胞研究中,已经开发了几种用于轨迹推断的方法。然而,确定几种细胞类型之间的相关谱系并解释下游分析的结果仍然是一项具有挑战性的任务,需要深入了解各种细胞类型的转变和进程模式。因此,需要一些方法来帮助研究人员分析和解释这些轨迹。结果:我们开发了PyEvoCell,这是一个通过大型语言模型(LLM)功能增强的轨迹解释和分析仪表板。PyEvoCell将LLM应用于轨迹推断方法(如Monocle3)的输出,以建议生物学相关的谱系。一旦定义了谱系,用户就可以进行差异表达和功能分析,这些分析也由LLM解释。最后,从分析中得出的任何假设或主张都可以使用真实性过滤器进行验证,真实性过滤器是LLM启用的一个功能,可以通过提供相关的PubMed引用来确认或拒绝主张。可用性和实现:该软件可在https://github.com/Sanofi-Public/PyEvoCell上获得。它包含安装说明、用户手册、演示数据集以及许可条件。https://doi.org/10.5281/zenodo.15114803。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyEvoCell: an LLM-augmented single-cell trajectory analysis dashboard.

Motivation: Several methods have been developed for trajectory inference in single-cell studies. However, identifying relevant lineages among several cell types and interpreting the results of downstream analysis remains a challenging task that requires deep understanding of various cell type transitions and progression patterns. Therefore, there is a need for methods that can aid researchers in the analysis and interpretation of such trajectories.

Results: We developed PyEvoCell, a dashboard for trajectory interpretation and analysis that is augmented by large language model (LLM) capabilities. PyEvoCell applies the LLM to the outputs of trajectory inference methods such as Monocle3, to suggest biologically relevant lineages. Once a lineage is defined, users can conduct differential expression and functional analyses which are also interpreted by the LLM. Finally, any hypothesis or claim derived from the analysis can be validated using the veracity filter, a feature enabled by the LLM, to confirm or reject claims by providing relevant PubMed citations.

Availability and implementation: The software is available at https://github.com/Sanofi-Public/PyEvoCell. It contains installation instructions, user manual, demo datasets, as well as license conditions. https://doi.org/10.5281/zenodo.15114803.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信