人工智能在多发性硬化症mri分析中的作用-简要概述。

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Frontiers in Artificial Intelligence Pub Date : 2025-04-08 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1478068
Jean-Pierre R Falet, Steven Nobile, Aliya Szpindel, Berardino Barile, Amar Kumar, Joshua Durso-Finley, Tal Arbel, Douglas L Arnold
{"title":"人工智能在多发性硬化症mri分析中的作用-简要概述。","authors":"Jean-Pierre R Falet, Steven Nobile, Aliya Szpindel, Berardino Barile, Amar Kumar, Joshua Durso-Finley, Tal Arbel, Douglas L Arnold","doi":"10.3389/frai.2025.1478068","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic resonance imaging (MRI) has played a crucial role in the diagnosis, monitoring and treatment optimization of multiple sclerosis (MS). It is an essential component of current diagnostic criteria for its ability to non-invasively visualize both lesional and non-lesional pathology. Nevertheless, modern day usage of MRI in the clinic is limited by lengthy protocols, error-prone procedures for identifying disease markers (e.g., lesions), and the limited predictive value of existing imaging biomarkers for key disability outcomes. Recent advances in artificial intelligence (AI) have underscored the potential for AI to not only improve, but also transform how MRI is being used in MS. In this short review, we explore the role of AI in MS applications that span the entire life-cycle of an MRI image, from data collection, to lesion segmentation, detection, and volumetry, and finally to downstream clinical and scientific tasks. We conclude with a discussion on promising future directions.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1478068"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011719/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of AI for MRI-analysis in multiple sclerosis-A brief overview.\",\"authors\":\"Jean-Pierre R Falet, Steven Nobile, Aliya Szpindel, Berardino Barile, Amar Kumar, Joshua Durso-Finley, Tal Arbel, Douglas L Arnold\",\"doi\":\"10.3389/frai.2025.1478068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic resonance imaging (MRI) has played a crucial role in the diagnosis, monitoring and treatment optimization of multiple sclerosis (MS). It is an essential component of current diagnostic criteria for its ability to non-invasively visualize both lesional and non-lesional pathology. Nevertheless, modern day usage of MRI in the clinic is limited by lengthy protocols, error-prone procedures for identifying disease markers (e.g., lesions), and the limited predictive value of existing imaging biomarkers for key disability outcomes. Recent advances in artificial intelligence (AI) have underscored the potential for AI to not only improve, but also transform how MRI is being used in MS. In this short review, we explore the role of AI in MS applications that span the entire life-cycle of an MRI image, from data collection, to lesion segmentation, detection, and volumetry, and finally to downstream clinical and scientific tasks. We conclude with a discussion on promising future directions.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"8 \",\"pages\":\"1478068\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011719/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2025.1478068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1478068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

磁共振成像(MRI)在多发性硬化症(MS)的诊断、监测和治疗优化中发挥着至关重要的作用。它是当前诊断标准的一个重要组成部分,因为它能够无创地观察病变和非病变病理。然而,MRI在临床中的现代应用受到冗长的方案、识别疾病标志物(如病变)的容易出错的程序以及现有成像生物标志物对关键残疾结果的有限预测价值的限制。人工智能(AI)的最新进展强调了AI不仅可以改善,而且可以改变MRI在MS中的应用方式的潜力。在这篇简短的综述中,我们探讨了AI在MS应用中的作用,这些应用跨越了MRI图像的整个生命周期,从数据收集到病变分割、检测和体积测定,最后到下游的临床和科学任务。最后,我们讨论了有希望的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of AI for MRI-analysis in multiple sclerosis-A brief overview.

Magnetic resonance imaging (MRI) has played a crucial role in the diagnosis, monitoring and treatment optimization of multiple sclerosis (MS). It is an essential component of current diagnostic criteria for its ability to non-invasively visualize both lesional and non-lesional pathology. Nevertheless, modern day usage of MRI in the clinic is limited by lengthy protocols, error-prone procedures for identifying disease markers (e.g., lesions), and the limited predictive value of existing imaging biomarkers for key disability outcomes. Recent advances in artificial intelligence (AI) have underscored the potential for AI to not only improve, but also transform how MRI is being used in MS. In this short review, we explore the role of AI in MS applications that span the entire life-cycle of an MRI image, from data collection, to lesion segmentation, detection, and volumetry, and finally to downstream clinical and scientific tasks. We conclude with a discussion on promising future directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信