基于源批评正则化的生成对抗模型优化。

Michael S Yao, Yimeng Zeng, Hamsa Bastani, Jacob Gardner, James C Gee, Osbert Bastani
{"title":"基于源批评正则化的生成对抗模型优化。","authors":"Michael S Yao, Yimeng Zeng, Hamsa Bastani, Jacob Gardner, James C Gee, Osbert Bastani","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Offline model-based optimization seeks to optimize against a learned surrogate model without querying the true oracle objective function during optimization. Such tasks are commonly encountered in protein design, robotics, and clinical medicine where evaluating the oracle function is prohibitively expensive. However, inaccurate surrogate model predictions are frequently encountered along offline optimization trajectories. To address this limitation, we propose <i>generative adversarial model-based optimization</i> using <b>adaptive source critic regularization</b> (<b>aSCR</b>)-a task- and optimizer- agnostic framework for constraining the optimization trajectory to regions of the design space where the surrogate function is reliable. We propose a computationally tractable algorithm to dynamically adjust the strength of this constraint, and show how leveraging aSCR with standard Bayesian optimization outperforms existing methods on a suite of offline generative design tasks. Our code is available at https://github.com/michael-s-yao/gabo.</p>","PeriodicalId":72099,"journal":{"name":"Advances in neural information processing systems","volume":"37 ","pages":"44009-44039"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065601/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generative Adversarial Model-Based Optimization via Source Critic Regularization.\",\"authors\":\"Michael S Yao, Yimeng Zeng, Hamsa Bastani, Jacob Gardner, James C Gee, Osbert Bastani\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Offline model-based optimization seeks to optimize against a learned surrogate model without querying the true oracle objective function during optimization. Such tasks are commonly encountered in protein design, robotics, and clinical medicine where evaluating the oracle function is prohibitively expensive. However, inaccurate surrogate model predictions are frequently encountered along offline optimization trajectories. To address this limitation, we propose <i>generative adversarial model-based optimization</i> using <b>adaptive source critic regularization</b> (<b>aSCR</b>)-a task- and optimizer- agnostic framework for constraining the optimization trajectory to regions of the design space where the surrogate function is reliable. We propose a computationally tractable algorithm to dynamically adjust the strength of this constraint, and show how leveraging aSCR with standard Bayesian optimization outperforms existing methods on a suite of offline generative design tasks. Our code is available at https://github.com/michael-s-yao/gabo.</p>\",\"PeriodicalId\":72099,\"journal\":{\"name\":\"Advances in neural information processing systems\",\"volume\":\"37 \",\"pages\":\"44009-44039\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12065601/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neural information processing systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neural information processing systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

离线基于模型的优化寻求针对学习到的代理模型进行优化,而在优化期间不查询真正的oracle目标函数。这类任务通常在蛋白质设计、机器人技术和临床医学中遇到,在这些领域,评估oracle函数的成本非常高。然而,在离线优化轨迹中经常遇到不准确的代理模型预测。为了解决这一限制,我们提出了基于生成对抗模型的优化,使用自适应源批评正则化(aSCR)——一种与任务和优化器无关的框架,用于将优化轨迹限制在代理函数可靠的设计空间区域。我们提出了一种计算上易于处理的算法来动态调整该约束的强度,并展示了如何利用aSCR与标准贝叶斯优化在一套离线生成设计任务上优于现有方法。我们的代码可在https://github.com/michael-s-yao/gabo上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Adversarial Model-Based Optimization via Source Critic Regularization.

Offline model-based optimization seeks to optimize against a learned surrogate model without querying the true oracle objective function during optimization. Such tasks are commonly encountered in protein design, robotics, and clinical medicine where evaluating the oracle function is prohibitively expensive. However, inaccurate surrogate model predictions are frequently encountered along offline optimization trajectories. To address this limitation, we propose generative adversarial model-based optimization using adaptive source critic regularization (aSCR)-a task- and optimizer- agnostic framework for constraining the optimization trajectory to regions of the design space where the surrogate function is reliable. We propose a computationally tractable algorithm to dynamically adjust the strength of this constraint, and show how leveraging aSCR with standard Bayesian optimization outperforms existing methods on a suite of offline generative design tasks. Our code is available at https://github.com/michael-s-yao/gabo.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信