全球DNA甲基化及其与遗传不稳定性和煤矿粉尘中无机元素和多环芳烃暴露的关系。

IF 2.5 4区 医学 Q3 GENETICS & HEREDITY
Mutagenesis Pub Date : 2025-04-17 DOI:10.1093/mutage/geaf010
Grethel León-Mejía, Monica Cappetta, Ana Letícia Hilário Garcia, Ornella Fiorillo-Moreno, Paula Rohr, Amner Muñoz-Acevedo, Alvaro Miranda-Guevara, Milton Quintana-Sosa, Wilner Martinez-Lopez, João Antonio Pêgas Henriques, Juliana da Silva
{"title":"全球DNA甲基化及其与遗传不稳定性和煤矿粉尘中无机元素和多环芳烃暴露的关系。","authors":"Grethel León-Mejía, Monica Cappetta, Ana Letícia Hilário Garcia, Ornella Fiorillo-Moreno, Paula Rohr, Amner Muñoz-Acevedo, Alvaro Miranda-Guevara, Milton Quintana-Sosa, Wilner Martinez-Lopez, João Antonio Pêgas Henriques, Juliana da Silva","doi":"10.1093/mutage/geaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Coal mining has significant economic and environmental implications. The extraction and combustion of coal release harmful chemicals and dust, impacting air, soil, and water quality, as well as natural habitats and human health. This study aimed to investigate the association between global DNA methylation, DNA damage biomarkers (including telomere length), and inorganic element concentrations in the blood of individuals exposed to coal mining dust. Additionally, polycyclic aromatic hydrocarbons (PAHs) were analyzed. The study included 150 individuals exposed to coal mining and 120 unexposed controls. Results showed significantly higher global DNA hypermethylation in the exposed group compared to controls. Moreover, in the exposed group, micronucleus frequency and age showed a significant correlation with global DNA hypermethylation. Blood levels of inorganic elements, including titanium, phosphorus, sodium, aluminum, iron, sulfur, copper, chromium, zinc, chlorine, calcium, and potassium, were potentially associated with DNA methylation and oxidative damage, as indicated by comet assay results. Furthermore, exposure to PAHs such as fluoranthene, naphthalene, and anthracene, emitted in mining particulate matter, may contribute to these effects. These findings highlight the complex interplay between genetic instability, global DNA hypermethylation, and environmental exposure in coal mining areas, emphasizing the urgent need for effective mitigation strategies.</p>","PeriodicalId":18889,"journal":{"name":"Mutagenesis","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global DNA methylation and its association with genetic instability and exposure to inorganic elements and polycyclic aromatic hydrocarbons in coal mining dust.\",\"authors\":\"Grethel León-Mejía, Monica Cappetta, Ana Letícia Hilário Garcia, Ornella Fiorillo-Moreno, Paula Rohr, Amner Muñoz-Acevedo, Alvaro Miranda-Guevara, Milton Quintana-Sosa, Wilner Martinez-Lopez, João Antonio Pêgas Henriques, Juliana da Silva\",\"doi\":\"10.1093/mutage/geaf010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Coal mining has significant economic and environmental implications. The extraction and combustion of coal release harmful chemicals and dust, impacting air, soil, and water quality, as well as natural habitats and human health. This study aimed to investigate the association between global DNA methylation, DNA damage biomarkers (including telomere length), and inorganic element concentrations in the blood of individuals exposed to coal mining dust. Additionally, polycyclic aromatic hydrocarbons (PAHs) were analyzed. The study included 150 individuals exposed to coal mining and 120 unexposed controls. Results showed significantly higher global DNA hypermethylation in the exposed group compared to controls. Moreover, in the exposed group, micronucleus frequency and age showed a significant correlation with global DNA hypermethylation. Blood levels of inorganic elements, including titanium, phosphorus, sodium, aluminum, iron, sulfur, copper, chromium, zinc, chlorine, calcium, and potassium, were potentially associated with DNA methylation and oxidative damage, as indicated by comet assay results. Furthermore, exposure to PAHs such as fluoranthene, naphthalene, and anthracene, emitted in mining particulate matter, may contribute to these effects. These findings highlight the complex interplay between genetic instability, global DNA hypermethylation, and environmental exposure in coal mining areas, emphasizing the urgent need for effective mitigation strategies.</p>\",\"PeriodicalId\":18889,\"journal\":{\"name\":\"Mutagenesis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/mutage/geaf010\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/mutage/geaf010","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

煤矿开采具有重大的经济和环境影响。煤炭的开采和燃烧释放有害化学物质和粉尘,影响空气、土壤和水质,以及自然栖息地和人类健康。本研究旨在探讨暴露于煤矿粉尘个体的整体DNA甲基化、DNA损伤生物标志物(包括端粒长度)和血液中无机元素浓度之间的关系。此外,还对多环芳烃(PAHs)进行了分析。这项研究包括150名接触采煤的人和120名未接触采煤的人。结果显示,与对照组相比,暴露组的整体DNA超甲基化明显更高。此外,在暴露组中,微核频率和年龄与整体DNA超甲基化显着相关。血液中无机元素的含量,包括钛、磷、钠、铝、铁、硫、铜、铬、锌、氯、钙和钾,都可能与DNA甲基化和氧化损伤有关,彗星测定结果表明了这一点。此外,接触采矿颗粒物质排放的多环芳烃,如氟蒽、萘和蒽,可能会造成这些影响。这些发现强调了遗传不稳定性、整体DNA超甲基化和煤矿地区环境暴露之间复杂的相互作用,强调了迫切需要有效的缓解策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global DNA methylation and its association with genetic instability and exposure to inorganic elements and polycyclic aromatic hydrocarbons in coal mining dust.

Coal mining has significant economic and environmental implications. The extraction and combustion of coal release harmful chemicals and dust, impacting air, soil, and water quality, as well as natural habitats and human health. This study aimed to investigate the association between global DNA methylation, DNA damage biomarkers (including telomere length), and inorganic element concentrations in the blood of individuals exposed to coal mining dust. Additionally, polycyclic aromatic hydrocarbons (PAHs) were analyzed. The study included 150 individuals exposed to coal mining and 120 unexposed controls. Results showed significantly higher global DNA hypermethylation in the exposed group compared to controls. Moreover, in the exposed group, micronucleus frequency and age showed a significant correlation with global DNA hypermethylation. Blood levels of inorganic elements, including titanium, phosphorus, sodium, aluminum, iron, sulfur, copper, chromium, zinc, chlorine, calcium, and potassium, were potentially associated with DNA methylation and oxidative damage, as indicated by comet assay results. Furthermore, exposure to PAHs such as fluoranthene, naphthalene, and anthracene, emitted in mining particulate matter, may contribute to these effects. These findings highlight the complex interplay between genetic instability, global DNA hypermethylation, and environmental exposure in coal mining areas, emphasizing the urgent need for effective mitigation strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mutagenesis
Mutagenesis 生物-毒理学
CiteScore
5.90
自引率
3.70%
发文量
22
审稿时长
6-12 weeks
期刊介绍: Mutagenesis is an international multi-disciplinary journal designed to bring together research aimed at the identification, characterization and elucidation of the mechanisms of action of physical, chemical and biological agents capable of producing genetic change in living organisms and the study of the consequences of such changes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信