确定多变量方法中每个相关结果变量的临床相对重要性:使用ACCORD试验数据的探索。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Akash Mishra, N Sreekumaran Nair, K T Harichandrakumar, Binu Vs, Santhosh Satheesh
{"title":"确定多变量方法中每个相关结果变量的临床相对重要性:使用ACCORD试验数据的探索。","authors":"Akash Mishra, N Sreekumaran Nair, K T Harichandrakumar, Binu Vs, Santhosh Satheesh","doi":"10.1080/10543406.2025.2489360","DOIUrl":null,"url":null,"abstract":"<p><p>In scenarios involving correlated endpoints, multivariate methods offer increased robustness for comparisons. However, understanding the individual contribution of each variable toward multivariate hypothesis rejection remains underexplored. Usually, this question is sidelined, and separate univariate analyses are performed. This paper addresses this gap by demonstrating the relative importance and contribution of variables toward the rejection of multivariate hypotheses, comparing it against a univariate approach using clinical trial data. Using the ACCORD lipid trial dataset, which includes lipid measurements of triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), we employed Hotelling's T<sup>2</sup> multivariate statistic for two-group comparisons. We showcased the significance and relative importance of contributions through standardized discriminant function coefficients and partial F tests. Additionally, we investigated the impact of varying correlation levels on the significance of each variable's contribution in multivariate versus univariate approaches. Our results revealed significant lipid differences in a multivariate context at the 12th and 36th months. Across both follow-ups, TG exhibited the highest relative importance and contribution, followed by HDL and LDL. Notably, in the 36th month, the univariate approach rendered LDL's contribution insignificant for group separation, contrasting with the significant contribution identified in the multivariate approach. Furthermore, the significance likelihood of variable contributions in group separation within the multivariate approach increased with rising correlation levels. The simulation technique and the power analysis was also adopted to characterize the features of the proposed method. Our approach enables the evaluation of the relative importance and significance of each variable's contribution within the multivariate framework. This methodology holds promise for enhancing the interpretation of clinical trial analysis outcomes, particularly when dealing with multiple correlated endpoints.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-12"},"PeriodicalIF":1.2000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying the clinical relative importance of each correlated outcome variables in multivariate approach: an exploration using ACCORD trial data.\",\"authors\":\"Akash Mishra, N Sreekumaran Nair, K T Harichandrakumar, Binu Vs, Santhosh Satheesh\",\"doi\":\"10.1080/10543406.2025.2489360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In scenarios involving correlated endpoints, multivariate methods offer increased robustness for comparisons. However, understanding the individual contribution of each variable toward multivariate hypothesis rejection remains underexplored. Usually, this question is sidelined, and separate univariate analyses are performed. This paper addresses this gap by demonstrating the relative importance and contribution of variables toward the rejection of multivariate hypotheses, comparing it against a univariate approach using clinical trial data. Using the ACCORD lipid trial dataset, which includes lipid measurements of triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), we employed Hotelling's T<sup>2</sup> multivariate statistic for two-group comparisons. We showcased the significance and relative importance of contributions through standardized discriminant function coefficients and partial F tests. Additionally, we investigated the impact of varying correlation levels on the significance of each variable's contribution in multivariate versus univariate approaches. Our results revealed significant lipid differences in a multivariate context at the 12th and 36th months. Across both follow-ups, TG exhibited the highest relative importance and contribution, followed by HDL and LDL. Notably, in the 36th month, the univariate approach rendered LDL's contribution insignificant for group separation, contrasting with the significant contribution identified in the multivariate approach. Furthermore, the significance likelihood of variable contributions in group separation within the multivariate approach increased with rising correlation levels. The simulation technique and the power analysis was also adopted to characterize the features of the proposed method. Our approach enables the evaluation of the relative importance and significance of each variable's contribution within the multivariate framework. This methodology holds promise for enhancing the interpretation of clinical trial analysis outcomes, particularly when dealing with multiple correlated endpoints.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2025.2489360\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2025.2489360","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在涉及相关端点的场景中,多变量方法为比较提供了更高的稳健性。然而,理解每个变量对多元假设拒绝的个体贡献仍未得到充分探讨。通常,这个问题被搁置一边,单独进行单变量分析。本文通过展示变量对拒绝多变量假设的相对重要性和贡献来解决这一差距,并将其与使用临床试验数据的单变量方法进行比较。使用ACCORD脂质试验数据集,其中包括甘油三酯(TG),低密度脂蛋白(LDL)和高密度脂蛋白(HDL)的脂质测量,我们采用Hotelling's T2多变量统计进行两组比较。我们通过标准化判别函数系数和部分F检验来展示贡献的显著性和相对重要性。此外,我们还研究了不同相关水平对多变量和单变量方法中每个变量贡献的显著性的影响。我们的结果显示,在12个月和36个月的多变量背景下,血脂存在显著差异。在两次随访中,TG表现出最高的相对重要性和贡献,其次是HDL和LDL。值得注意的是,在第36个月,单变量方法显示LDL对组分离的贡献不显著,与多变量方法中发现的显著贡献形成对比。此外,在多变量方法中,组分离中变量贡献的显著性似然随着相关水平的上升而增加。采用仿真技术和功率分析对该方法的特点进行了表征。我们的方法能够在多元框架内评估每个变量的贡献的相对重要性和意义。这种方法有望加强临床试验分析结果的解释,特别是在处理多个相关终点时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identifying the clinical relative importance of each correlated outcome variables in multivariate approach: an exploration using ACCORD trial data.

In scenarios involving correlated endpoints, multivariate methods offer increased robustness for comparisons. However, understanding the individual contribution of each variable toward multivariate hypothesis rejection remains underexplored. Usually, this question is sidelined, and separate univariate analyses are performed. This paper addresses this gap by demonstrating the relative importance and contribution of variables toward the rejection of multivariate hypotheses, comparing it against a univariate approach using clinical trial data. Using the ACCORD lipid trial dataset, which includes lipid measurements of triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), we employed Hotelling's T2 multivariate statistic for two-group comparisons. We showcased the significance and relative importance of contributions through standardized discriminant function coefficients and partial F tests. Additionally, we investigated the impact of varying correlation levels on the significance of each variable's contribution in multivariate versus univariate approaches. Our results revealed significant lipid differences in a multivariate context at the 12th and 36th months. Across both follow-ups, TG exhibited the highest relative importance and contribution, followed by HDL and LDL. Notably, in the 36th month, the univariate approach rendered LDL's contribution insignificant for group separation, contrasting with the significant contribution identified in the multivariate approach. Furthermore, the significance likelihood of variable contributions in group separation within the multivariate approach increased with rising correlation levels. The simulation technique and the power analysis was also adopted to characterize the features of the proposed method. Our approach enables the evaluation of the relative importance and significance of each variable's contribution within the multivariate framework. This methodology holds promise for enhancing the interpretation of clinical trial analysis outcomes, particularly when dealing with multiple correlated endpoints.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信